Skip to main content
Log in

Exploring the capabilities of Digital Holography as tool for testing optical microstructures

  • 3DR Express
  • Published:
3D Research

Abstract

A demonstration of the capabilities of Digital Holography (DH) in microscope configuration is presented for inspecting and qualifying optical microstructures. Different structures with dimensions ranging from hundreds to few tens of microns are investigated, analyzed and characterized by DH showing that the technique is suitable either for liquid as well as polymeric microlenses. Thanks to the numerical reconstruction of the complex wavefields, we show that DH is able to retrieve not only the morphology of each single structure element but also to furnish accurate information on all the changes (spontaneous or induced) occurring during the inspection time, such as the curvature variation of liquid microlenses or the wavefront distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Berge, J. Peseux (2000) Variable focal lens controlled by an external voltage: An application of electrowetting, Eur. Phys. J. E. 3:159–163

    Article  Google Scholar 

  2. E. P. Chan, A. J. Crosby (2006) Fabricating microlens arrays by surface wrinkling, Adv. Mater. 18:3238.

    Article  Google Scholar 

  3. C. Y. Chang, S. Y. Yang, L. S. Huang, T. M. Jeng (2006) A novel method for rapid fabrication of microlens arrays using micro-transfer molding with soft mold, J. Micromech. Microeng. 16:999

    Article  Google Scholar 

  4. F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, C. Depeursinge (2006) Characterization of microlenses by digital holographic microscopy, Applied Optics. 45:829–835

    Article  Google Scholar 

  5. C. C. Cheng, C. A. Chang, J. A. Yeh (2006) Variable focus dielectric liquid droplet lens, Opt. Express 14:4101–4106

    Article  Google Scholar 

  6. C. C. Cheng, J. A. Yeh (2007) Dielectrically actuated liquid lens, Opt. Express. 15:7140–7145

    Article  Google Scholar 

  7. N. Chronis, G. L. Liu, K. H. Jeong, L. P. Lee (2003) Tunable liquid-filled microlens array integrated with microfluidic network, Opt. Express. 11:2370–2378

    Article  Google Scholar 

  8. G. Coppola et al. (2004) A digital holographic microscope for complete characterization of microelectromechanical systems, Meas. Sci. Tech. 15:529–539

    Article  Google Scholar 

  9. E. Cuche, F. Bevilacqua, C. Depeursinge (1999) Digital Holography for quantitative phase-contrast imaging, Opt. Lett. 24:291–293

    Article  Google Scholar 

  10. H. Y. Dai, Y. J. Liu, X. W. Sun, D. Luo (2009) A negative-positive tunable liquid-crystal microlens array by printing, Opt. Express 17:4317

    Article  Google Scholar 

  11. S. De Nicola, P. Ferraro, A. Finizio, S. Grilli, G. Coppola, M. Iodice, P. De Natale, M. Chiarini (2004) Surface topography of microstructures in lithium niobate by digital holographic microscopy, Meas. Sci. Technol. 15:961–968

    Article  Google Scholar 

  12. L. Dong, A. K. Agarwal, D. J. David, J. Beebe, H. Jiang (2006) Adaptive liquid mcrolenses activated by stimuli-responsive hydrogels, Nature 442:551–554

    Article  Google Scholar 

  13. P. Ferraro, G. Coppola, S. De Nicola, A. Finizio, G. Pierattini (2003) Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time, Opt. Lett. 28:1257–1259

    Article  Google Scholar 

  14. P. Ferraro, S. Grilli, L. Miccio, V. Vespini (2008) Wettability patterning of lithium niobate substrate by modulating pyroelectric effect to form microarray of sessile droplets, Appl. Phys. Lett. 92:213107

    Article  Google Scholar 

  15. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, G. Pierattini (2004) Controlling image size as a function of distance and wavelength in Fresnel transform reconstruction of digital holograms, Opt. Lett. 29:854–856.

    Article  Google Scholar 

  16. P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, G. Coppola (2004) Recovering image resolution in reconstructing digital off-axis holograms by Fresneltransform method, Appl. Phys. Lett. 85:2709–20711

    Article  Google Scholar 

  17. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, R. Meucci (2001) Whole optical wavefields reconstruction by Digital Holography, Opt. Express 9:294–302

    Article  Google Scholar 

  18. S. Grilli, L. Miccio et al (2008) Liquid micro-lens array activated by selective electro-wetting on lithium niobate substrates, Opt. Express 16:8084

    Article  Google Scholar 

  19. S. Grilli, M. Paturzo, L. Miccio, P. Ferraro (2008) In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy, Meas. Sci. Technol. 19:074008

    Article  Google Scholar 

  20. S. Grilli, V. Vespini, P. Ferraro (2008) Surface-Charge Lithography for Direct PDMS Micro-Patterning, Langmuir 24:13262

    Article  Google Scholar 

  21. W. H. Hsieh, J. H. Chen (2005) Lens-Profile Control by Electrowetting Fabrication Technique, IEEE Photonic Tech. Lett. 17:606–608

    Article  Google Scholar 

  22. P. H. Huang, T. C. Huang, Y. T. Sun, S. Y. Yang (2008) Fabrication of large area resin microlens arrays using gas-assisted ultraviolet embossing, Opt. Express 16:3041

    Article  Google Scholar 

  23. X. Huang, C. C. Cheng et al (2008) Thermally tunable polymer microlenses, Appl. Phys. Lett. 92:251904

    Article  Google Scholar 

  24. K. H. Jeong, G. L. Liu, N. Chronis, L. P. Lee (2004) Tunable microdoublet lens array, Opt. Express 12:2494

    Article  Google Scholar 

  25. B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, D. J. Beebe (2000) Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer, J. Microelectromech. Syst. 9:76–81

    Article  Google Scholar 

  26. F. Krogmann, W. Monch, H. Zappe (2006) A MEMSbased variable micro-lens system, Jour. Opt. A 8:S330–S336

    Article  Google Scholar 

  27. S. Kuiper, B. H. W. Hendriks (2004) Variable- focus liquid lens for miniature cameras, Appl. Phys. Lett. 85:1128–1130

    Article  Google Scholar 

  28. S. Y. Lee, H. W. Tung, W. C. Chen, W. Fang (2006) Thermal actuated solid tunable lens, IEEE Phot. Tech. Lett. 18:2191

    Article  Google Scholar 

  29. X. Lei, P. Xiaoyuan, M. Jianmin, A. K. Asundi (2001) Studies of Digital Microscopic Holography with Applications to Microstructure Testing, Appl. Opt. 40:5046–5052

    Article  Google Scholar 

  30. T. H. Lin, H. Yang, C. K. Chao (2006) Concave microlens array mold fabrication in photoresist using UV proximity printing, DTIP of MEMS & MOEMS, Stresa, Italy

  31. M. G. Lippmann (1875) Ann. Chim. Phys. 5:494

    Google Scholar 

  32. F. Merola, L. Miccio, M. Paturzo, S. De Nicola, P. Ferraro (2009) Full characterization of the photorefractive bright soliton formation process using a digital holographic technique, Meas. Sci. Technol. 20:045301–10

    Article  Google Scholar 

  33. F. Merola, M. Paturzo, S. Coppola, V. Vespini, P. Ferraro (2009) Self-patterning of a polydimethylsiloxane microlens array on functionalized substrates and characterization by digital holography, J. Micromech. Microeng. 19:125006–10

    Article  Google Scholar 

  34. L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, S. De Nicola (2007) Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram, Appl. Phys. Lett. 90:041104

    Article  Google Scholar 

  35. L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, P. Ferraro (2009) Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy, Opt. Express 17:2488

    Article  Google Scholar 

  36. L. Miccio, M. Paturzo, S. Grilli, V. Vespini, P. Ferraro (2009) Hemicylindrical and toroidal liquid microlens formed by pyro-electro-wetting, Opt. Lett. 34:1075

    Article  Google Scholar 

  37. L. Miccio, M. Paturzo, A. Finizio, P. Ferraro (2010) Light induced patterning of poly(dimethylsiloxane) microstructures, Opt. Express. 18:10947–10955

    Article  Google Scholar 

  38. P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, I. Rodriguez (2006) Fluidic lenses with variable focal length, Appl. Phys. Lett. 88:041120

    Article  Google Scholar 

  39. H. Ren, D. Fox, P. A. Anderson, B. Wu, S. T. Wu (2006) Tunable-focus liquid lens controlled using a servo motor, Opt. Express 14:8031–8036

    Article  Google Scholar 

  40. H. Ren, S. T. Wu (2008) Tunable-focus liquid microlens array using dielectrophoretic effect, Opt. Express 16:2646

    Article  Google Scholar 

  41. P. Ruffieux et al (2008) Two step process for the fabrication of diffraction limited concave microlens arrays, Opt. Express 16:19541

    Article  Google Scholar 

  42. S. Seebacker, W. Osten, T. Baumbach, W. Juptner (2001) The determination of materials parameters of microcomponents using digital holography, Opt. Las. Eng. 36:103–126

    Article  Google Scholar 

  43. T. K. Shih, J. R. Ho, J. W. J. Cheng (2004) A new approach to polymeric microlens array fabrication using soft replica molding, IEEE Phot. Tech. Lett. 16:2078

    Article  Google Scholar 

  44. T. T. Wen, H. Hocheng (2009) Innovative rapid replication of microlens arrays using electromagnetic force-assisted UV imprinting, J.Micromech. Microeng. 19:025012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Miccio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merola, F., Miccio, L., Coppola, S. et al. Exploring the capabilities of Digital Holography as tool for testing optical microstructures. 3D Res 2, 3 (2011). https://doi.org/10.1007/3DRes.01(2011)3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/3DRes.01(2011)3

Keywords

Navigation