Skip to main content

Endothelial and neuro-humoral control of coronary blood flow in health and disease

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 116

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 116))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aizawa Y, Murata M, Hayashi M, Funazaki T, Ito S, Shibata A (1985) Vasoconstrictor effect of neuropeptide Y (NPY) on canine coronary artery. Jpn J Physiol 49:584–588

    Google Scholar 

  • Amezcua JL, Palmer RMJ, De Souza BM, Moncada S (1989) Nitric oxide synthesized from L-arginine regulates vascular tone in the coronary circulation of the rabbit. Br J Pharmacol 97:1119–1124

    Google Scholar 

  • Anderson FL, Kralios AC, Hershberger R, Bristow MR (1988a) Effect of vasoactive intestinal peptide on myocardial contracility and coronary blood flow in the dog: comparison with isoproterenol and forskolin. J Cardiovasc Pharmacol 12:365–371

    Google Scholar 

  • Anderson FL, Kralios AC, Hershberger R, Bristow MR (1988b) Desensitization of myocardial but not coronary VIP receptor-mediated responses in dogs. Am J Physiol 255:H601–H607

    Google Scholar 

  • Ando J, Kamatsuda T, Kamiya A (1988) Cytoplasmic calcium response to fluid shear stress in cultured vascular endothelial cells. In Vitro Cell Develop Biol 24:871

    Google Scholar 

  • Angus JA, Cocks TM (1989) Endothelium-derived relaxing factor. Pharmacol Ther 41:303–351

    Google Scholar 

  • Armour JA, Randall WC (1971) Canine left ventricular intramyocardial pressures. Am J Physiol 220:1833–1839

    Google Scholar 

  • Arnold G, Kosche F, Miessner E, Neitzert A, Lochner W (1968) The importance of the perfusion pressure in the coronary arteries for the contractility and the oxygen consumption of the heart. Pfluegers Arch 299:339–356

    Google Scholar 

  • Ashton JH, Benedict CR, FitzGerald C, Raheja S, Taylor A, Campbell WB, Buja LM, Willerson JT (1986) Serotonin as a mediator of cyclic flow variations in stenosed canine coronary arteries. Circulation 73:572–578

    Google Scholar 

  • Aversano T, Becker LC (1985) Persistence of coronary vasodilator reserve despite functionally significant flow reduction. Am J Physiol 248:H403–H411

    Google Scholar 

  • Bache RJ, Cobb FR (1977) Effect of maximal coronary vasodilation on transmural myocardial perfusion during tachycardia in the awake dog. Circ Res 41:648–653

    Google Scholar 

  • Bache RJ, Schwartz JS (1982) Effect of perfusion pressure distal to a coronary stenosis on transmural myocardial blood flow. Circulation 65:928–935

    Google Scholar 

  • Bache RJ, Cobb FR, Greenfield Jr JC (1974) Myocardial blood flow distribution during ischemia-induced coronary vasodilation in the unanesthetized dog. J Clin Invest 54:1462–1472

    Google Scholar 

  • Bardenheuer H, Schrader J (1983) Relationship between myocardial oxygen consumption, coronary flow, and adenosine release in an improved isolated working heart preparation of guinea pigs. Circ Res 51:263–271

    Google Scholar 

  • Bassenge E (1984) Physiologie der Koronardurchblutung. In: Roskamm H (ed) Handbuch der inneren Medizin. Koronarerkrankungen. Springer, Berlin Heidelberg New York, pp 1–48

    Google Scholar 

  • Bassenge E (1989) Flow-dependent regulation of coronary vasomotor tone. Eur Heart J 10 (Suppl F):22–27

    Google Scholar 

  • Bassenge E, Busse R (1988) Endothelial modulation of coronary tone. Prog Cardiovasc Dis 30:349–380

    Google Scholar 

  • Basenge E, Pohl U (1986) Two principles of large artery dilation: indirect endothelium-mediated and direct smooth muscle relaxation. In: Magro E, Osswald W, Reis O, Vanhoutte P (eds) Central and peripheral mechanisms of cardiovascular regulation. Nato Adv Sci Inst Series A: Life Science. Plenum, New York, pp 163–196

    Google Scholar 

  • Bassenge E, Walter P, Doutheil U (1967) Wirkungsumkehr der adrenergischen Coronargefässreaktion in Abhägigkeit vom Coronargefässtonus. Pfluegers Arch 297:146–155

    Google Scholar 

  • Bassenge E, Werle E, Holtz J, Fritz H (1969) Significance of kinins in the coronary circulation. Pharmacol Res Comm 1:136–137

    Google Scholar 

  • Bassenge E, Werle E, Walter P, Holtz J (1970) Significance of kinins in the coronary circulation. Adv Exp Med Biol 8:141–148

    Google Scholar 

  • Bassenge E, Kucharczyk M, von Restorff W, Werle E (1972) Effect of bradykinin potentiating peptide on coronary circulation in conscious dogs. Adv Exp Med Biol 21:251–157

    Google Scholar 

  • Bassenge E, Busse R, Pohl U (1987) Abluminal release and asymmetrical response of the rabbit arterial wall to endothelium-derived relaxing factor. Circ Res 61 (Suppl II):II–68–II–73

    Google Scholar 

  • Bassenge E, Busse R, Pohl U (1989) Hemmung der Thrombozytenaggregation und-adhäsi-on durch EDRF und deren pathophysiologische Bedeutung. Z Kardiol 78 (Suppl 6):54–58

    Google Scholar 

  • Bayliss WM (1902) On the local reaction of the arterial wall to changes of internal pressure. J Physiol 28:220–231

    Google Scholar 

  • Bellamy RF (1978) Diastolic coronary artery pressure-flow relations in the dog. Circ Res 43:92–101

    Google Scholar 

  • Bellamy RF (1980) Calculation of coronary vascular resistance. Cardiovasc Res 14:261–269

    Google Scholar 

  • Belloni FL, Bruttig SP, Rubio R, Berne RM (1986) Uptake and release of adenosine by cultured rat aortic smooth muscle. Microvasc Res 32:200–210

    Google Scholar 

  • Berkenboom GM, Unger P (1990) Alpha-adrenergic coronary constriction in effort angina. Basic Res Cardiol (in press)

    Google Scholar 

  • Berkenboom GM, Abramowicz M, Vandermoten P, Degre SG (1986) Role of alpha-adrenergic coronary tone in exercise-induced angina pectoris. Am J Cardiol 57:195–198

    Google Scholar 

  • Berne RM (1958) Effect of epinephrine and norepinephrine on coronary circulation. Circ Res 6:644–655

    Google Scholar 

  • Berne RM (1961) Nucleotide degradation in the hypoxic heart and its possible relation to regulation of coronary blood flow. Fed Proc 20:101 (abstract)

    Google Scholar 

  • Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol 204:317–322

    Google Scholar 

  • Berne RM (1980) The role of adenosine in the regulation of coronary blood flow. Circ Res 47:807–813

    Google Scholar 

  • Berne RM, Rubio R (1979) Coronary circulation. In: Handbook of Physiology. The cardiovascular system I. American Physiological Society, Maryland, pp 873–952

    Google Scholar 

  • Berne RM, Blackmon JR, Gardner TH (1957) Hypoxemia and coronary blood flow. J Clin Invest 36:1101–1106

    Google Scholar 

  • Berne RM, DeGeest H, Levy MN (1965) Influence of the cardiac nerves on coronary resistance. Am J Physiol 208:763–769

    Google Scholar 

  • Boeynaems JM (1988) Drugs influencing the vascular production of prostacyclin. Prostaglandins 34:197–204

    Google Scholar 

  • Bonham AC, Gutterman DD, Arthur JM, Marcus ML, Gebhart GF, Brody MJ (1987a) Electrical stimulation in perifornical lateral hypothalamus decreases coronary blood flow in cats. Am J Physiol 252:H474–H484

    Google Scholar 

  • Bonham AC, Gutterman DD, Arthur JM, Marcus ML, Gebhart GF, Brody MJ (1987b) Neurogenic regulation of coronary blood flow: evidence for a central nervous system pathway. Circ Res 61 (Suppl II):II–42–II–46

    Google Scholar 

  • Borchard F (1978) The adrenergic nerves of the normal and the hypertrophied heart. Thieme, Stuttgart

    Google Scholar 

  • Bossaller C, Yamamoto H, Henry PD (1986) Endothelium-dependent relaxation is depressed in atherosclerotic arteries in vivo. Z Kardiol 75 (Suppl 4):63 (abstract)

    Google Scholar 

  • Bossaller C, Habib GB, Yamamoto H, Williams C, Wells S, Henry PD (1987) Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5′-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta. J Clin Invest 79:170–174

    Google Scholar 

  • Boulanger C, Lüscher TF (1990) Release of endothelin from the porcine aorta. Inhibition by endothelium-derived nitric oxide. J Clin Invest 85:587–590

    Google Scholar 

  • Bretschneider HJ (1967) Aktuelle Probleme der Koronardurchblutung und des Myokardstoffwechsels. Regensburger Jbl Aerztl Fortb 15:1–27

    Google Scholar 

  • Broderick R, Bialecki R, Tulenko TN (1989) Cholesterol-induced changes in rabbit arterial smooth muscle sensitivity to adrenergic stimulation. Am J Physiol 257:H170–H178

    Google Scholar 

  • Brown BG, Lee AB, Bolson EL, Dodge HT (1984a) Reflex constriction of significant coronary stenosis as a mechanism contributing to ischemic left ventricular dysfunction during isometric exercise. Circulation 70:18–24

    Google Scholar 

  • Brown BG, Bolson EL, Dodge HT (1984b) Dynamic mechanisms in human coronary stenosis. Circulation 70:917–922

    Google Scholar 

  • Brum JM, Sufan Q, Dewey J, Bove AA (1985) Effects of angiotensin and ergonovine on large and small coronary arteries in the intact dog. Basic Res Cardiol 80:333–342

    Google Scholar 

  • Buck JD, Hardman HF, Warltier DC, Gross GJ (1981) Changes in ischemic blood flow distribution and dynamic severity of a coronary stenosis induced by beta blockade in the canine heart. Circulation 64:708–715

    Google Scholar 

  • Buckberg GD, Fixler DE, Archie Jr JP, Hoffman JIE (1972) Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ Res 30:67–81

    Google Scholar 

  • Buffington CW, Feigl EO (1981) Adrenergic coronary vasoconstriction in the presence of coronary stenosis in the dog. Circ Res 48:416–423

    Google Scholar 

  • Bult H, Boeckxstaens GE, Pelckmans PA, Jordaens FH, van Maercke TM, Herman AG (1990) Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature (in press)

    Google Scholar 

  • Burnstock G (1989) Vascular control by purines with emphasis on the coronary system. Eur Heart J 10 (Suppl F):15–21

    Google Scholar 

  • Busch P, Deussen A, Heusch G (1988) Sympathetic effects on segmental coronary resistances and their role in coronary collateral perfusion. J Appl Cardiol 3:145–160

    Google Scholar 

  • Buss DD, Wüsten B, Schaper W (1978) Effects of coronary stenoses and ventricular loading conditions on coronary flow. Basic Res Cardiol 73:571–583

    Google Scholar 

  • Busse R, Mülsch A (1990) Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS 265:133–136

    Google Scholar 

  • Busse R, Trogisch G, Bassenge E (1985) The role of endothelium in the control of vascular tone. Basic Res Cardiol 80:475–490

    Google Scholar 

  • Busse R, Lückhoff A, Bassenge E (1987) Endothelium-derived relaxant factor inhibits platelet activation. Naunyn Schmiedebergs Arch Pharmacol 336:566–571

    Google Scholar 

  • Cambridge D, Davey MJ, Massingham R (1977) Prazosin, a selective antagonist of post-synaptic α-adrenoceptors. Br J Pharmacol 59:514P–515P

    Google Scholar 

  • Canty JM (1988) Coronary pressure-function and steady-state pressure-flow relations during autoregulation in the unanesthetized dog. Circ Res 63:821–836

    Google Scholar 

  • Canty JM, Klocke FJ (1985) Reduced regional myocardial perfusion in the presence of pharmacologic vasodilator reserve. Circulation 71:370–377

    Google Scholar 

  • Carbonell LF, Carretero OA, Stewart JM, Scicli AG (1988) Effect of a kinin antagonist on the acute antihypertensive activity of enalaprilat in severe hypertension. Hypertension 11:239–243

    Google Scholar 

  • Carlsson L, Abrahamsson T (1989) Ramiprilat attenuates the local release of noradrenaline in the ischemic myocardium. Eur J Pharmacol 166:157–164

    Google Scholar 

  • Case RB, Greenberg H (1976) The response of canine coronary vascular resistance to local alterations in coronary arterial pCO2. Circ Res 39:558–566

    Google Scholar 

  • Case RB, Felix A, Wachter M, Kyriakidis G, Castellana F (1978) Relative effect of CO2 on canine coronary vascular resistance. Circ Res 42:410–418

    Google Scholar 

  • Cavero I, Dennis T, Lefevre-Borg F, Perrot P, Roach AG, Scatton B (1979) Effects of clonidine, prazosin and phentolamine on heart rate and coronary sinus catecholamine concentration during cardioaccelerator nerve stimulation in spinal dogs. Br J Pharmacol 67:283–292

    Google Scholar 

  • Cernacek P, Stewart DJ (1989) Immunoreactive endothelin in human plasma: marked elevations in patients in cardiogenic shock. Biochem Biophys Res Comm 161:562–567

    Google Scholar 

  • Chen DG, Dai X-Z, Zimmerman BG, Bache RJ (1988) Postsynaptic α1-and α2-adrenergic mechanisms in coronary vasoconstriction. J Cardiovasc Pharmacol 11:61–67

    Google Scholar 

  • Chester A, Dashwood MR, Clarke J, Larkin S, Davies GJ, Tadjkarmi S, Maseri A, Yacoub M (1989) Influence of endothelin on human coronary arteries and localization of its binding sites. Am J Cardiol 63:1395–1398

    Google Scholar 

  • Chierchia S, De Caterina R, Brunelli C, Crea F, Patrono C, Maseri A (1982) Failure of thromboxane A2 blockade to prevent attacks of vasospastic angina. Circulation 62:702–705

    Google Scholar 

  • Chierchia S, Davies G, Berkenboom G, Crea F, Crean P, Maseri A (1984) α-adrenergic receptors and coronary spasm: an elusive link. Circulation 69:8–14

    Google Scholar 

  • Chierchia S, Pratt T, DeCoster P, Maseri A (1985) Alpha-adrenergic control of collateral flow: another determinant of coronary flow reserve. Circulation 72 (Suppl III):190 (abstract)

    Google Scholar 

  • Chilian WM, Ackell PH (1988) Transmural differences in sympathetic coronary constriction during exercise in the presence of coronary stenosis. Circ Res 62:216–225

    Google Scholar 

  • Chilian WM, Layne SM (1990a) Coronary microvascular responses to reductions in perfusion pressure. Evidence for persistent arteriolar vasomotor tone during coronary hypoperfusion. Circ Res 66:1227–1238

    Google Scholar 

  • Chilian WM, Layne SM (1990b) Coronary arteriolar α2-adrenergic constriction. FASEB J 4:A 1070 (abstract)

    Google Scholar 

  • Chilian WM, Marcus ML (1985) Effects of coronary and extravascular pressure on intramyocardial and epicardial blood velocity. Am J Physiol 248:H170–H178

    Google Scholar 

  • Chilian WM, Boatwright RB, Shoji T, Griggs DM (1981) Evidence against significant resting sympathetic coronary vasoconstrictor tone in the conscious dog. Circ Res 49:866–876

    Google Scholar 

  • Chilian WM, Harrison DG, Haws CW, Snyder WD, Marcus ML (1986) Adrenergic coronary tone during submaximal exercise in the dog is produced by circulating catecholamines. Evidence for adrenergic denervation supersensitivity in the myocardium but not in coronary vessels. Circ Res 58:68–82

    Google Scholar 

  • Chilian WM, Eastham CL, Layne SM, Marcus ML (1988) Small vessel phenomena in the coronary microcirculation: phasic intramyocardial perfusion and coronary microvascular dynamics. Prog Cardiovasc Dis 31:17–38

    Google Scholar 

  • Chilian WM, Layne SM, Eastham CL, Marcus ML (1989) Heterogeneous microvascular coronary α-adrenergic vasoconstriction. Circ Res 64:376–388

    Google Scholar 

  • Chu A, Stakely A, Cobb FR (1987) Nitrate-like effects of atrial natriuretic peptide on the coronary vasculature. Circulation 76 (Suppl IV):IV-240 (abstract)

    Google Scholar 

  • Chu A, Cobb FR, Hagen PO, Murray JJ (1989a) Effects of a stabilized endothelium-derived relaxing factor on coronary vasculature in awake dogs. Am J PHysiol 257:H1895–H1899

    Google Scholar 

  • Chu A, Chambers D, Lin C-C, Kuehl W, Cobb FR (1989b) Nitric oxide significantly alters basal coronary vasomotor tone in the awake dog. Circulation 80 (Suppl II):II-124 (abstract)

    Google Scholar 

  • Chu A, Morris K, Kuehl W, Cusma J, Navetta F, Cobb FR (1989c) Effects of atrial natriuretic peptide on the coronary arterial vasculature in humans. Circulation 80:1627–1635

    Google Scholar 

  • Clarke JG, Kerwin R, Larkin S, Lee Y, Yacoub M, Davies GJ, Hackett D, Dawbarn D, Bloom SR, Maseri A (1987) Coronary artery infusion of neuropeptide Y in patients with angina pectoris. Lancet I:1057–1059

    Google Scholar 

  • Clarke JG, Benjamin N, Larkin SW, Webb DJ, Keogh BE, Davies GJ, Maseri A (1989) Endothelin is a potent long-lasting vasoconstrictor in man. Am J Physiol 257:H2033–H2035

    Google Scholar 

  • Clozel J-P, Clozel M (1989) Effects of endothelin on the coronary vascular bed in open-chest dogs. Circ Res 65:1193–1200

    Google Scholar 

  • Cocks TM, Angus JA (1983) Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature 305:627–629

    Google Scholar 

  • Cocks TM, Angus JA, Campbell GR (1985) Release and properties of endothelium-derived relaxing factor (EDRF) from endothelial cells in culture. J Cell Physiol 123:310–320

    Google Scholar 

  • Cohen MV, Kirk ES (1973) Differential response of large and small coronary arteries to nitroglycerin and angiotensin. Circ Res 33:445–453

    Google Scholar 

  • Cohen RA (1986) Role of autonomic nerves and endothelium in coronary vasospasm. In: Tulenko T (ed) Recent advances in arterial diseases: atheroslerosis, hypertension, and vasospasm. Liss, New York, pp 353–362

    Google Scholar 

  • Cohen RA (1988) Platelet 5-hydroxytryptamine and vascular adrenergic nerves. News Physiol Sci 3:185–189

    Google Scholar 

  • Cohen RA, Cunningham LD (1988) Low density lipoproteins inhibit endothelium-dependent relaxations caused by bradykinin in the pig coronary artery. Circulation 78 (Suppl II):II-183 (abstract)

    Google Scholar 

  • Cohen RA, Weisbrod RM (1988) Endothelium inhibits norepinephrine release from adrenergic nerves of rabbit carotid artery. Am J Physiol 254:H871–H878

    Google Scholar 

  • Cohen RA, Shepherd JT, Vanhoutte PM (1983a) Inhibitory role of the endothelium in the response of isolated coronary arteries to platelets. Science 221:273–274

    Google Scholar 

  • Cohen RA, Shepherd JT, Vanhoutte PM (1983b) Prejunctional and postjunctional actions of endogenous norepinephrine at the sympathetic neuroeffector junction in canine coronary arteries. Circ Res 52:16–25

    Google Scholar 

  • Cohen RA, Shepherd JT, Vanhoutte PM (1984) Effects of the adrenergic transmitter on epicardial coronary arteries. Fed Proc 43:2862–2870

    Google Scholar 

  • Cohen RA, Zitnay KM, Weisbrod RM (1987) Accumulation of 5-hydroxytryptamine leads to dysfunction of adrenergic nerves in canine coronary artery following intimal damage in vivo. Circ Res 61:829–833

    Google Scholar 

  • Cohen RA, Zitnay KM, Haudenschild CC, Cunningham LD (1988) Loss of selective endothelial cell vasoactive functions caused by hypercholesterolemia in pig coronary arteries. Circ Res 63:903–910

    Google Scholar 

  • Collier J, Vallance P (1989) Endothelium-derived relaxing factor is an endogenous vasodilator in man. Br J Pharmacol 97:639–641

    Google Scholar 

  • Collins P, Sheridan D (1985) Improvement in angina pectoris with alpha adrenoceptor blockade. Br Heart J 53:488–492

    Google Scholar 

  • Connaughton S, Docherty JR (1988) Evidence that SK and F 104078 does not differentiate between pre-and postjunctional α2-adrenoceptors. Naunyn Schmiedebergs Arch 338:379–382

    Google Scholar 

  • Connaughton S, Docherty JR (1990) No evidence for differences in pre-and postjunctional α2-adrenoceptors in the periphery. Br J Pharmacol 99:97–102

    Google Scholar 

  • Constantine JW, Lebel W (1980) Complete blockade by phenoxybenzamine of alpha 1-but not of alpha 2-vascular receptors in dogs and the effect of propranolol. Naunyn Schmiedebergs Arch Pharmacol 314:149–156

    Google Scholar 

  • Constantine JW, Weeks RA, McShane WK (1978) Prazosin and presynaptic α-receptors in the cardioaccelerator nerve of the dog. Eur J Pharmacol 50:51–60

    Google Scholar 

  • Cooke JP, Rossitch Jr E, Anden E, Loscalzo J, Dzau VJ (1990) Flow activates a specific endothelial potassium channel to release an endogenous nitrovasodilator. J Clin Invest (in press)

    Google Scholar 

  • Cox DA, Hintze TH, Vatner SF (1983) Effects of acetylcholine on large and small coronary arteries in conscious dogs. J Pharmacol Exp Ther 225:764–769

    Google Scholar 

  • Cross CE, Rieben PA, Salisbury PF (1961) Influence of coronary perfusion and myocardial edema on pressure-volume diagram of left ventricle. Am J Physiol 201:102–108

    Google Scholar 

  • Crossman DC, Larkin SW, Fuller RW, Davies GJ, Maseri A (1989) Substance P dilates epicardial coronary arteries and increases coronary blood flow in humans. Circulation 80:475–484

    Google Scholar 

  • Dai X-Z, Herzog CA, Schwartz JS, Bache RJ (1986) Coronary blood flow during exercise following nonselective and selective α1-adrenergic blockade with indoramin. J Cardiovasc Pharmacol 8:574–581

    Google Scholar 

  • Daly RN, Hieble JP (1987) Neuropeptide Y modulates adrenergic neurotransmission by an endothelium dependent mechansim. Eur J Pharmacol 138:445–446

    Google Scholar 

  • Daniell HB, Carson RR, Ballard KD, Thomas GR, Privitera PJ (1984) Effects of captopril on limiting infarct size in conscious dogs. J Cardiovasc Pharmacol 6:1043–1047

    Google Scholar 

  • Dart AM, Schömig A, Dietz R, Mayer E, Kübler W (1984) Release of endogenous catecholamines in the ischemic myocardium of the rat. Part B: Effect of sympathetic nerve stimulation. Circ Res 55:702–706

    Google Scholar 

  • Daugherty A, Zweifel BS, Sobel BE, Schonfeld G (1988) Isolation of low density lipoprotein from atherosclerotic vascular tissue of Watanabe heritable hyperlipidemic rabbits. Arteriosclerosis 8:768–777

    Google Scholar 

  • Daut J, Maier-Rudolph W, van Beckerath N, Mehrke G, Günther K, Goedel-Meinen L (1990) Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 247:1341–1344

    Google Scholar 

  • Decker N, Schwartz PJ (1985) Postjunctional alpha1-and alpha2-adrenoceptors in the coronaries of the perfused guinea-pig heart. J Pharmacol Exp Ther 232:251–257

    Google Scholar 

  • Denn MJ, Stone HL (1976) Autonomic innervation of dog coronary arteries. J Appl Physiol 41:30–35

    Google Scholar 

  • De Nucci G, Thomas R, D'Orleans-Juste P, Antunes E, Walder C, Warner TD, Vane JR (1988) Pressor effects of circulating endothelin are limited by its removal in the pulmonary circulation and by the release of prostacyclin and endothelium-derived relaxing factor. Proc Natl Acad Sci USA 85:9797–9800

    Google Scholar 

  • Deussen A, Heusch G, Thämer V (1985) Alpha 2-adrenoceptor-mediated coronary vasoconstriction persists after exhaustion of coronary dilator reserve. Eur J Pharmacol 115:147–153

    Google Scholar 

  • Deussen A, Möser G, Schrader J (1986) Contribution of coronary endothelial cells to cardiac adenosine production. Pfluegers Arch 406:608–614

    Google Scholar 

  • Deussen A, Borst M, Kroll K, Schrader J (1988) Formation of S-adenosylhomocysteine in the heart. II: A sensitive index for regional myocardial underperfusion. Circ Res 63:250–261

    Google Scholar 

  • Deussen A, Lloyd HGE, Schrader J (1989) Contribution of S-adenosylhomocysteine to cardiac adenosine formation. J Mol Cell Cardiol 21:773–782

    Google Scholar 

  • De Witt DF, Wangler RD, Thompson CI, Sparks HV Jr (1983) Phasic release of adenosine during steady state metabolic stimulation in the isolated guinea pig heart. Circ Res 53:636–643

    Google Scholar 

  • Dole WP (1987) Autoregulation of the coronary circulation. Prog CArdiovasc Disc 29:293–323

    Google Scholar 

  • Dole WP, Bishop VS (1982) Influence of autoregulation and capacitance on diastolic coronary artery pressure-flow relationships in the dog. Circ Res 51:261–270

    Google Scholar 

  • Dole WP, Nuno DW (1986) Myocardial oxygen tension determines the degree and pressure range of coronary autoregulation. Circ Res 59:202–215

    Google Scholar 

  • Dole WP, Yamada N, Bishop VS, Olsson RA (1985) Role of adenosine in coronary blood flow regulation after reductions in perfusion pressure. Circ Res 56:517–524

    Google Scholar 

  • Domenech RJ, de la Prida JM (1975) Mechanical effects of heart contraction on coronary flow. Cardiovasc Res 9:509–514

    Google Scholar 

  • Downey HF, Bashour FA, Boatwright RB, Parker PE (1975) Uniformity of transmural perfusion in anesthetized dogs with maximally dilated coronary circulations. Circ Res 37:111–117

    Google Scholar 

  • Downey JM, Kirk ES (1975) Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res 36:753–760

    Google Scholar 

  • Doxey JC, Roach AG, Smith CFC (1983) Studies on RX 781 094: a selective, potent and specific antagonist of alpha 2-adrenoceptors. Br J Pharmacol 78:489–505

    Google Scholar 

  • Drexler H, Zeiher AM, Wollschläger H, Meinertz T, Just H, Bonzel T (1989) Flow-dependent coronary artery dilatation in humans. Circulation 80:466–474

    Google Scholar 

  • Driscol TE, Moir TW, Eckstein RW (1964) Vascular effect of changes in perfusion pressure in the nonischemic and ischemic heart. Circ Res 14/15 (Suppl I): I94–I102

    Google Scholar 

  • Dull RO, Davies PF (1989) Featured Research: Endothelial regulation of vascular tone. Circulation 80 (Suppl II): II-481 (abstract)

    Google Scholar 

  • Dusting GJ (1984) Coronary vasomotor tone: the role of prostanoids re-examined. Bibl Cardiol 38:178–188

    Google Scholar 

  • Dusting GJ, Moncada S, Vane JR (1979) Prostaglandins, their intermediates and precursors: cardiovascular actions and regulatory roles in normal and abnormal circulatory systems. Prog Cardiovasc Dis 21:405–430

    Google Scholar 

  • Dzau VJ (1988) Circulating versus local renin-angiotensin system in cardiovascular homeostasis. Circulation 77 (Suppl I):I4–I13

    Google Scholar 

  • Edlund A, Berglund B, van Dorne D, Kaijser L, Nowak J, Patrono C, Sollevi A, Wennmalm A (1985) Coronary flow regulation in patients with ischemic heart disease: release of purines and prostacyclin and the effect of inhibitors of prostacyclin formation. Circulation 71:1113–1120

    Google Scholar 

  • Ehring T, Heusch G (1990) Felodipine prevents the poststenotic myocardial ischemia induced by α2-adrenergic coronary constriction. Cardiovasc Drugs Ther 4:443–450

    Google Scholar 

  • Eikens E, Wilcken DEL (1974) Reactive hyperemia in the dog heart: effects of temporarily restricting arterial inflow and of coronary occlusions lasting one and two cardiac cycles. Circ Res 35:702–712

    Google Scholar 

  • Ellis AK, Klocke FJ (1979) Effects of preload on the transmural distribution of perfusion and pressure-flow relationships in the canine coronary vascular bed. Circ Res 46:68–77

    Google Scholar 

  • Ertl G (1987) Coronary vasoconstriction in experimental myocardial ischemia. J Cardiovasc Pharmacol 9 (Suppl 2):S9–S17

    Google Scholar 

  • Ertl G, Kloner RA, Alexander RW, Braunwald E (1982) Limitation of experimental infarct size by an angiotensin-converting enzyme inhibitor. Circulation 65:40–48

    Google Scholar 

  • Evers AS, Murphree S, Saffitz JE, Jakschik BA, Needleman P (1985) Effects of endogenously produced leukotrienes, thromboxane, and prostaglandins on coronary vascular resistance in rabbit myocardial infarction. J Clin Invest 75:992–999

    Google Scholar 

  • Ezra D, Laurindo FRM, Eimerl J, Goldstein RE, Peck CC, Feuerstein G (1986) Tachykinin modulation of coronary blood flow. Eur J Pharmacol 122:135–138

    Google Scholar 

  • Ezra D, Laurindo FRM, Goldstein DS, Goldstein RE, Feuerstein G (1987) Calcitonin gene-related peptide: a potent modulator of coronary flow. Eur J Pharmacol 137:101–105

    Google Scholar 

  • Ezra D, Goldstein RE, Czaja JF, Feuerstein GZ (1989) Lethal ischemia due to intracoronary endothelin in pigs. Am J Physiol 257:H339–H343

    Google Scholar 

  • Faber JE (1988) In situ analysis of α-adrenoceptors in arteriolar and venular smooth muscle in rat skeletal muscle microcirculation. Circ Res 62:37–50

    Google Scholar 

  • Fam WM, McGregor M (1968) Effect of nitroglycerin and dipyridamole on regional coronary resistance. Circ Res 22:649–659

    Google Scholar 

  • Fauler J, Frölich JC (1989) Cardiovascular effects of leukotrienes. Cardiovasc Drugs Ther 3:499–505

    Google Scholar 

  • Feigl EO (1968) Carotid sinus reflex control of coronary blood flow. Circ Res 23:223–237

    Google Scholar 

  • Feigl EO (1969) Parasympathetic control of coronary blood flow in dogs. Circ Res 25:509–519

    Google Scholar 

  • Feigl EO (1975) Control of myocardial oxygen tension by sympathetic coronary vasoconstriction in the dog. Circ Res 37:88–95

    Google Scholar 

  • Feigl EO (1983) Coronary physiology. Physiol Rev 63:1–205

    Google Scholar 

  • Feigl EO (1987) The paradox of adrenergic coronary vasoconstriction. Circulation 76:737–745

    Google Scholar 

  • Feldman RD, Christy JP, Paul ST, Harrison DG (1989) β-adrenergic receptors on canine coronary collateral vessels: characterization and function. Am J Physiol 257:H1634–H1639

    Google Scholar 

  • Fiedler VB, Abram TS (1987) Effects of intracoronary leukotriene D4 infusion on the coronary circulation, hemodynamics, and prostanoid release in porcine experiments. Cardiology 74:89–99

    Google Scholar 

  • Fiedler VB, Mardin M, Abram TS (1984) Leukotriene D4-induced vasoconstriction of coronary arteries in anaesthetized dogs. Eur Heart J 5:253–260

    Google Scholar 

  • Fischell TA, Nellessen U, Johnson DE, Ginsburg R (1989) Endothelium-dependent arterial vasoconstriction after balloon angioplasty. Circulation 79:899–910

    Google Scholar 

  • Fish RD, Nabel EG, Selwyn AP, Ludmer PL, Mudge GH, Kirshenbaum JM, Schoen FJ, Alexander RW, Ganz P (1988) Responses of coronary arteries of cardiac transplant patients to acetylcholine. J Clin Invest 81:21–31

    Google Scholar 

  • Fitscha P, Kaliman J, Sinzinger H (1985) Gamma-camera imaging after autologous human platelet labeling with 111In-oxine-sulfate: a key for assessing the efficacy of prostacyclin treatment in active atherosclerosis? In: Schrör K (ed) Prostaglandins and other eicosanoids in the cardiovascular system. Karger, Basel, pp 352–357

    Google Scholar 

  • FitzGerald GA, Smith B, Pederson AK, Brash AR (1984) Increased prostacyclin biosynthesis in patients with severe atherosclerosis and platelet activation. N Engl J Med 310:1065–1068

    Google Scholar 

  • Fleckenstein A, Fleckenstein-Grün G (1988) Mechanism of action of calcium antagonists in heart and vascular smooth muscle. Eur Heart J 9 (Suppl H):95–99

    Google Scholar 

  • Fleckenstein A, Nakayama K, Fleckenstein-Grün G, Byon YK (1975) Interactions of vasoactive ions and drugs with Ca-dependent excitation-contraction coupling of vascular smooth muscle. North Holland, Amsterdam, pp 555–566

    Google Scholar 

  • Folkow B (1952) A study of the factors influencing the tone of denervated blood vessels perfused at various pressures. Acta Physiol Scand 27:99–117

    Google Scholar 

  • Folkow B (1964) Description of the myogenic hypothesis. Circ Res 14/15 (Suppl I):I279–I287

    Google Scholar 

  • Folts JD, Crowell Jr EB, Rowe GG (1976) Platelet aggregation in partially obstructed vessels and its elimination with aspirin. Circulation 54:365–370

    Google Scholar 

  • Förster W (1980) Effect of various agents on prostaglandin biosynthesis and the anti-aggregatory effect. Acta Med Scand 642[Suppl]6:35–46

    Google Scholar 

  • Förstermann U, Mülsch A, Böhme E, Busse R (1986) Stimulation of soluble guanylate cyclase by an acetylcholine-induced endothelium-derived factor from rabbit and canine arteries. Circ Res 58:531–538

    Google Scholar 

  • Förstermann U, Mügge A, Alheid U, Haverich A, Frölich JC (1988) Selective attenuation of endothelium-mediated vasodilation in atherosclerotic human coronary arteries. Circ Res 62:185–190

    Google Scholar 

  • Franco-Cereceda A (1989) Endothelin-and neuropeptide Y-induced vasoconstriction of human epicardial coronary arteries. Br J Pharmacol 97:968–972

    Google Scholar 

  • Franco-Cereceda A, Lundberg JM, Dahlöf C (1985) Neuropeptide Y and sympathetic control of heart contractility and coronary vascular tone. Acta Physiol Scand 124:361–369

    Google Scholar 

  • Freiman PC, Mitchell GG, Heistad DD, Armstrong ML, Harrison DG (1986) Atherosclerosis impairs endothelium-dependent vascular relaxation to acetylcholine and thrombin in primates. Circ Res 58:783–789

    Google Scholar 

  • Friedman PL, Brown EJ, Gunther S, Alexander RW, Barry WH, Mudge GH, Grossman W (1981) Coronary vasoconstrictor effect of indomethacin in patients with coronary artery disease. N Engl J Med 305:1171–1175

    Google Scholar 

  • Fukuda K, Hori S, Kusuhara M, Satoh T, Kyotani S, Handa S, Nakamura Y, Oono H, Yamaguchi K (1989) Effect of endothelin as a coronary vasoconstrictor in the Langendorff-perfused rat heart. Eur J Pharmacol 165:301–304

    Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Google Scholar 

  • Furlong B, Hendersen AH, Lewis MJ, Smith JA (1987) Endothelium-derived relaxing factor inhibits in vitro platelet aggregation. Br J Pharmacol 90:687–692

    Google Scholar 

  • Fuster V, Steele PM, Chesebro JH (1985) Role of platelets and thrombosis in coronary atherosclerotic disease and sudden death. J Am Coll Cardiol 5:175B–184B

    Google Scholar 

  • Gage JE, Hess OM, Murakami T, Ritter M, Grimm J, Krayenbuehl HP (1986) Vasoconstriction of stenotic coronary arteries during dynamic exercise in patients with classic angina pectoris: reversibility by nitroglycerin. Circulation 73:865–876

    Google Scholar 

  • Gallagher KP, Matsuzaki M, Osakada G, Kemper WS, Ross Jr J (1983) Effect of exercise on the relationship between myocardial blood flow and systolic wall thickening in dogs with acute coronary stenosis. Circ Res 52:716–729

    Google Scholar 

  • Gallagher KP, Osakada G, Kemper WS, Ross Jr J (1985) Cyclical coronary flow reductions in conscious dogs equipped with ameroid constrictors to produce severe coronary narrowing. Basic Res Cardiol 80:100–106

    Google Scholar 

  • Galle J, Bassenge E, Busse R (1990a) Oxidized low density lipoproteins potentiate vasoconstrictions to various agonists by direct interaction with vascular smooth muscle. Circ Res 66:1287–1293

    Google Scholar 

  • Galle J, Lückhoff A, Busse R, Bassenge E (1990b) Effects of native and oxidized low density lipoproteins on formation and inactivation of EDRF. Arteriosclerosis (in press)

    Google Scholar 

  • Gardiner S, Compton A, Bennet T, Palmer R, Moncada S (1990) Regional haemodynamic changes during oral ingestion of NG-monomethyl-L-arginine or NG-nitro-L-arginine methyl ester in conscious Brattleboro rats. Br J Pharmacol 99: (in press)

    Google Scholar 

  • Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336:385–388

    Google Scholar 

  • Gavras H, Benetos A, Gavras I (1987) Contribution of bradykinin to maintenance of normal blood pressure. Hypertension 9 (Suppl III):III147–III149

    Google Scholar 

  • Gebremedhin D, Koltei MZ, Pogatsa G, Magyer K, Hadhazy P (1988) Influence of experimental diabetes on the mechanical responses of canine coronary arteries: role of endothelium. Cardiovasc Res 22:537–544

    Google Scholar 

  • Gerlach E, Deuticke B, Dreisbach RH (1963) Der Nucleotid-Abbau im Herzmuskel bei Sauerstoffmangel und seine mögliche Bedeutung für die Coronardurchblutung. Naturwissenschaften 6:228–229

    Google Scholar 

  • Gerlings ED, Miller DT, Gilmore JP (1969) Oxygen availability: a determinant of myocardial potassium balance. Am J Physiol 216:559–562

    Google Scholar 

  • Gerova M, Barta E, Gero J (1979a) Sympathetic control of major coronary artery diameter in the dog. Circ Res 44:459–467

    Google Scholar 

  • Gerova M, Dolezel S, Gero J, Barta E (1979b) Role of the vagus in control of the major conduit coronary artery in the dog. Physiol Bohemoslov 28:299–307

    Google Scholar 

  • Gerrity RG, Naito HK, Richardson M, Schwartz CJ (1979) Dietary induced atherogenesis in swine. Am J Pathol 95:775–792

    Google Scholar 

  • Gewirtz H, Most AS, Williams DO (1982) The effect of generalized alpha-receptor stimulation on regional myocardial blood flow distal to a severe coronary artery stenosis. Circulation 65:1329–1336

    Google Scholar 

  • Gewirtz H, Brautigan DL, Olsson RA, Brown P, Most AS (1983) Role of adenosine in the maintenance of coronary vasodilation distal to a severe coronary artery stenosis. Observations in conscious domestic swine. Circ Res 53:42–51

    Google Scholar 

  • Gewirtz H, Weeks G, Nathanson M, Sharaf B, Fedele F, Most AS (1989) Tissue acidosis. Role in sustained arteriolar dilatation distal to a coronary stenosis. Circulation 79:890–898

    Google Scholar 

  • Gibbs JSR, Crean PA, Mockus L, Wright C, Sutton GC, Fox KM (1989) The variable effect of angiotensin converting enzyme inhibition on myocardial ischaemia in chronic stable angina. Br Heart J 62: 112–117

    Google Scholar 

  • Gibson A, Mirzazadeh S, Hobbs AJ, Moore PK (1990) L-NG-monomethyl-arginine and L-NG-nitro-arginine inhibit non-adrenergic, non-cholinergic relaxation of the mouse anococcygeus muscle. Br J Pharmacol 99:602–606

    Google Scholar 

  • Ginsburg RC (1984) Myogenic tone of the isolated human epicardial artery: regulatory controls. Acta Med Scand 694[Suppl]:29–37

    Google Scholar 

  • Ginsburg R, Bristow MR, Davis K, Billingham ME, Schroeder JS, Stinson EB, Harrison DC (1981) Receptor analysis of the human coronary artery — normal distribution and effect of atherosclerosis. Circulation 64 [Suppl

    Google Scholar 

  • Glazier JJ, Faxon DP, Mills RM, Bresnahan MR, Ryan TJ, Gavras H (1989) Effect of arginine vasopressin on coronary and systemic hemodynamics in man. Int J Cardiol 24:95–103

    Google Scholar 

  • Gorman MW, Sparks HV Jr (1982) Progressive coronary vasoconstriction during relative ischemia in canine myocardium. Circ Res 51:411–420

    Google Scholar 

  • Gould L, Reddy GV, Gombrecht RF (1973) Oral phentolamine in angina pectoris. Jpn Heart J 14:393–397

    Google Scholar 

  • Grant JA, Scrutton MC (1979) Novel a 2-adrenoceptors primarily responsible for inducing human platelet aggregation. Nature 277:659–661

    Google Scholar 

  • Greenberg S, Diecke FPJ, Peevy K, Tanaka RP (1989) The endothelium modulated adrenergic neurotransmission to canine pulmonary arteries and veins. Eur J Pharmacol 162:67–80

    Google Scholar 

  • Gregg DE (1963) Effect of coronary perfusion pressure or coronary flow on oxygen usage of the myocardium. Circ Res 13:497–500

    Google Scholar 

  • Griffith TM, Lewis MJ, Newby AC, Henderson AH (1988) Endothelium-derived relaxing factor. J Am Coll Cardiol 12:797–806

    Google Scholar 

  • Gu J, Polak JM, Adrian TE, Allen JM, Tatemoto K, Bloom SR (1983) Neuropeptide tyrosine (NPY) — a major cardiac neuropeptide. Lancet I:1008–1010

    Google Scholar 

  • Gunther S, Green L, Muller JE, Mudge GH, Grossman W (1981) Prevention by nifedipine of abnormal coronary vasoconstriction in patients with coronary artery disease. Circulation 63:849–855

    Google Scholar 

  • Guth BD, Heusch G, Seitelberger R, Ross Jr J (1987a) Mechanism of beneficial effect of beta-adrenergic blockade on exercise-induced myocardial ischemia in conscious dogs. Circ Res 60:738–746

    Google Scholar 

  • Guth BD, Heusch G, Seitelberger R, Ross Jr J (1987b) Elimination of exercise-induced regional myocardial dysfunction by a bradycardic agent in dogs with chronic coronary stenosis. Circulation 75:661–669

    Google Scholar 

  • Guth BD, Thaulow E, Heusch G, Seitelberger R, Ross Jr J (1990) Myocardial effects of selective alpha-adrenoceptor blockade during exercise in dogs. Circ Res 66:1703–1712

    Google Scholar 

  • Guz A, Kurland GS, Freedberg AS (1960) Relation of coronary flow to oxygen supply. Am J Physiol 199:179–182

    Google Scholar 

  • Gwirtz PA, Stone HL (1982) Coronary blood flow changes following activation of adrenergic receptors in the conscious dog. Am J Physiol 243:H13–H19

    Google Scholar 

  • Gwirtz PA, Overn SP, Mass HJ, Jones CE (1986) Alpha 1-adrenergic constriction limits coronary flow and cardiac function in running dogs. Am J Physiol 250:H1117–H1126

    Google Scholar 

  • Haass M, Cheng B, Richardt G, Lang RE, Schömig A (1989) Characterization and presynaptic modulation of stimulation-evoked exocytotic co-release of noradrenaline and neuropeptide Y in guinea pig heart. Naunyn Schmiedebergs Arch Pharmacol 339:71–78

    Google Scholar 

  • Hackett JG, Abboud FM, Mark AL, Schmid PG, Heistad DD (1972) Coronary vascular responses to stimulation of chemoreceptors and baroreceptors. Circ Res 31:8–17

    Google Scholar 

  • Haddy FJ, Scott JB (1975) Metabolic factors in peripheral circulatory regulation. Fed Proc 34:2006–2011

    Google Scholar 

  • Hamilton FN, Feigl EO (1976) Coronary vascular sympathetic beta-receptor innervation. Am J Physiol 230:1569–1576

    Google Scholar 

  • Han C, Abel PW (1987) Neuropeptide Y potentiates contraction and inhibits relaxation of rabbit coronary arteries. J Cardiovasc Pharmacol 9:675–681

    Google Scholar 

  • Harder DR (1987) Pressure-induced myogenic activation of cat cerebral arteries is dependent on intact endothelium. Circ Res 60:102–107

    Google Scholar 

  • Harrison DG, Chilian WM, Marcus ML (1986) Absence of functioning alpha-adrenergic receptors in mature canine coronary collaterals. Circ Res 59:133–142

    Google Scholar 

  • Harrison DG, Freiman PC, Armstrong ML, Marcus ML, Heistad DD (1987a) Alterations of vascular reactivity in atherosclerosis. Circ Res 61 (Suppl II):II74–II80

    Google Scholar 

  • Harrison DG, Armstrong ML, Freiman PC, Heistad DD (1987b) Restoration of endothelium-dependent relaxation by dietary treatment of atherosclerosis. J Clin Invest 80:1808–1811

    Google Scholar 

  • Hart G, Gokal R (1977) The syndrome of inappropriate antidiuretic hormone secretion associated with acute myocardial infarction. Postgrad Med J 53:761–762

    Google Scholar 

  • Hartmann A, Saeed M, Bing RJ (1987) Release of endothelium-derived relaxing factor from freshly harvested porcine endothelial cells. Circ Res 61:548–554

    Google Scholar 

  • Hautamaa PV, Dai XZ, Homans DC, Robb JF, Bache RJ (1987) Vasomotor properties of immature canine coronary collateral circulation. Am J Physiol 252:H1105–H1111

    Google Scholar 

  • Hautamaa PV, Dai X-Z, Homans DC, Bache RJ (1989) Vasomotor activity of moderately well-developed canine coronary collateral circulation. Am J Physiol 256:H890–H897

    Google Scholar 

  • Haws CW, Green LS, Burgess MJ, Abildskov JA (1987) Effects of cardiac sympathetic nerve stimulation on regional coronary blood flow. Am J Physiol 252:H269–H274

    Google Scholar 

  • Heistad DD, Armstrong ML, Marcus ML, Piegors DJ, Mark AL (1984) Augmented responses to vasoconstrictor stimuli in hypercholesterolemic and atherosclerotic monkeys. Circ Res 54:711–718

    Google Scholar 

  • Heistad DD, Mark AL, Marcus ML, Piegors DJ, Armstrong ML (1987) Dietary treatment of atherosclerosis abolishes hyperresponsiveness to serotonin: implications for vasospasm. Circ Res 61:346–351

    Google Scholar 

  • Hennekens CH, Peto R, Hutchison GB, Doll R (1988) On overview of the British and American aspirin studies. N Engl J Med 318:923–924

    Google Scholar 

  • Henry PD, Yokoyama M (1980) Supersensitivity of atherosclerotic rabbit aorta to ergonovine. J Clin Invest 66:306–313

    Google Scholar 

  • Heusch G (1990) a-adrenergic mechanisms in myocardial ischemia. Circulation 81:1–13

    Google Scholar 

  • Heusch G, Deussen A (1983) The effects of cardiac sympathetic nerve stimulation on the perfusion of stenotic coronary arteries in the dog. Circ Res 53:8–15

    Google Scholar 

  • Heusch G, Deussen A (1984) Nifedipine prevents sympathetic vasoconstriction distal to severe coronary stenoses. J Cardiovasc Pharmacol 6:378–383

    Google Scholar 

  • Heusch G, Guth BD (1989) Neurogenic regulation of coronary vasomotor tone. Eur Heart J 10 (Suppl F):6–14

    Google Scholar 

  • Heusch G, Yoshimoto N (1983a) Effects of heart rate and perfusion pressure on segmental coronary resistances and collateral perfusion. Pfluegers Arch 397:284–289

    Google Scholar 

  • Heusch G, Yoshimoto N (1983b) Effects of cardiac contraction on segmental coronary resistances and collateral perfusion. Int J Microcirc 2:131–141

    Google Scholar 

  • Heusch G, Yoshimoto N, Heegemann H, Thämer V (1983) Interaction of methoxamine with compensatory vasodilation distal to coronary stenoses. Drug Res 33:1647–1650

    Google Scholar 

  • Heusch G, Deussen A, Schipke J, Thämer V (1984) α1-and α2-adrenoceptor-mediated vasoconstriction of large and small canine coronary arteries in vivo. J Cardiovasc Pharmacol 6:961–968

    Google Scholar 

  • Heusch G, Deussen A, Schipke J, Thämer V (1986) Adenosine, dipyridamole and isosorbid-dinitrate are ineffective to prevent the sympathetic initiation of poststenotic myocardial ischemia. Drug Res 36:1045–1048

    Google Scholar 

  • Heusch G, Seitelberger R, Guth BD, Ross Jr J (1986) Adrenergic mechanisms in myocardial ischemia. J Appl Cardiol 1:125–142

    Google Scholar 

  • Heusch G, Guth BD, Seitelberger R, Ross Jr J (1987) Attenuation of exercise-induced myocardial ischemia in dogs with recruitment of coronary vasodilator reserve by nifedipine. Circulation 75:482–490

    Google Scholar 

  • Heyndrickx GR, Boettcher DH, Vatner SF (1976) Effects of angiotensin, vasopressin, and methoxamine on cardiac function and blood flow distribution in conscious dogs. Am J Physiol 231:1579–1587

    Google Scholar 

  • Heyndrickx GR, Muylaert P, Pannier JL (1982) α-adrenergic control of oxygen delivery to myocardium during exercise in conscious dogs. Am J Physiol 242:H805–H809

    Google Scholar 

  • Heyndrickx GR, Vilaine JP, Moerman EJ, Leusen I (1984) Role of prejunctional alpha 2-adrenergic receptors in the regulation of myocardial performance during exercise in conscious dogs. Circ Res 54:683–693

    Google Scholar 

  • Hibbs JB, Vavrin Z, Taintor RR (1987) L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J Immunol 138:550–565

    Google Scholar 

  • Hilton R, Eichholtz F (1925) The influence of chemical factors on the coronary circulation. J Physiol 59:413–425

    Google Scholar 

  • Hirsch EF, Borghard-Erdle AM (1961) The innervation of the human heart. Arch Pathol 71:384–407

    Google Scholar 

  • Hirsh PD, Hillis LD, Campbell WB, Firth BG, Willerson JT (1981) Release of prostaglandins and thromboxane into the coronary circulation in patients with ischemic heart disease. N Engl J Med 304:685–691

    Google Scholar 

  • Hodgson JMcB, Marshall JJ (1989) Direct vasoconstriction and endothelium-dependent vasodilation. Mechanisms of acetylcholine effects on coronary flow and arterial diameter in patients with nonstenotic coronary arteries. Circulation 79:1043–1051

    Google Scholar 

  • Hodgson JMcB, Cohen MD, Szentpetery S, Thames MD (1989) Effects of regional α-and β-blockade on resting and hyperemic coronary blood flow in conscious, unstressed humans. Circulation 79:797–809

    Google Scholar 

  • Hoffman BB, Lefkowitz RJ (1980) Alpha-adrenergic receptor subtypes. N Engl J Med 302:1390–1396

    Google Scholar 

  • Hoffman JIE (1987) Transmural myocardial perfusion. Prog Cardiovasc Dis 29:429–464

    Google Scholar 

  • Holmgren S, Abrahamsson T, Almgren O (1985) Adrenergic innervation of coronary arteries and ventricular myocardium in the pig: fluorescence microscopic appearance in the normal state and after ischemia. Basic Res Cardiol 80:18–26

    Google Scholar 

  • Holtz J, Grunewald WA, Manz R, von Restorff W, Bassenge E (1977a) Intracapillary hemoglobin oxygen saturation and oxygen consumption in different layers of the left ventricular myocardium. Pfluegers Arch 370:253–258

    Google Scholar 

  • Holtz J, Mayer E, Bassenge E (1977b) Demonstration of alpha-adrenergic coronary control in different layers of canine myocardium by regional myocardial sympathectomy. Pfluegers Arch 372:187–194

    Google Scholar 

  • Holtz J, Saeed M, Sommer O, Bassenge E (1982) Norepinephrine constricts the canine coronary bed via postsynaptic α2-adrenoceptors. Eur J Pharmacol 82:199–202

    Google Scholar 

  • Holtz J, Giesler M, Bassenge E (1983) Two dilatory mechanisms of anti-anginal drugs on epicardial coronary arteries in vivo: indirect, flow-dependent, endothelium-mediated dilation and direct smooth muscle relaxation. Z Kardiol 72 (Suppl 3):98–106

    Google Scholar 

  • Holtz J, Förstermann U, Pohl U, Giesler M, Bassenge E (1984) Flow-dependent, endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: effects on cyclo-oxygenase inhibition. J Cardiovasc Pharmacol 6:1161–1169

    Google Scholar 

  • Holtz J, Busse R, Sommer O, Bassenge E (1987) Dilation of epicardial arteries in conscious dogs induced by angiotensin-converting enzyme inhibition with enalaprilat. J Cardiovasc Pharmacol 9:348–355

    Google Scholar 

  • Homcy CJ, Graham RM (1985) Molecular characterization of adrenergic receptors. Circ Res 56:635–650

    Google Scholar 

  • Hopwood AM, Burnstock G (1987) ATP mediates coronary vasoconstriction via P2x-purinoceptors and coronary vasodilatation via P2y-purinoceptors in the isolated perfused rat heart. Eur J Pharmacol 136:49–54

    Google Scholar 

  • Horio Y, Yasue H, Rokutanda M, Makamura N, Ogawa H, Takaoka K, Matsuyama K, Kimura T (1986) Effects of intracoronary injection of acetylcholine on coronary arterial diameter. Am J Cardiol 57:984–989

    Google Scholar 

  • Hossack KF, Brown BG, Stewart DK, Dodge HT (1984) Diltiazem-induced blockade of sympathetically mediated constriction of normal and diseased coronary arteries: lack of epicardial coronary dilatory effect in humans. Circulation 70:465–471

    Google Scholar 

  • Houston DS, Shepherd JT, Vanhoutte PM (1986) Aggregating human platelets cause direct contraction and endothelium-dependent relaxation of isolated canine coronary arteries. Role of serotonin, thromboxane A2, and adenine nucleotides. J Clin Invest 78:539–544

    Google Scholar 

  • Howes LG, Krum H (1989) Plasma lipoproteins, cardiovascular reactivity and the sympathetic nervous system. J Auton Pharmacol 9:293–301

    Google Scholar 

  • Huang AH, Feigl EO (1988) Adrenergic coronary vasoconstriction helps maintain uniform transmural blood flow distribution during exercise. Circ Res 62:286–298

    Google Scholar 

  • Igarashi Y, Aizawa Y, Tamura M, Ebe K, Yamaguchi T, Shibata A (1989) Vasoconstrictor effect of endothelin on the canine coronary artery: is a novel endogenous peptide involved in regulating myocardial blood flow and coronary spasm? Am Heart J 118:674–678

    Google Scholar 

  • Ignarro LJ (1989) Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ Res 65:1–21

    Google Scholar 

  • Ignarro LJ, Byrns RE, Buga GM, Wood KS (1987) Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res 61:866–879

    Google Scholar 

  • Inoue T, Tomoike H, Hisano K, Nakamura M (1988) Endothelium determines flow-dependent dilation of the epicardial coronary artery in dogs. J Am Coll Cardiol 11:187–191

    Google Scholar 

  • Ito BR, Feigl EO (1985a) Carotid baroreceptor reflex coronary vasodilation in the dog. Circ Res 56:486–495

    Google Scholar 

  • Ito BR, Feigl EO (1985b) Carotid chemoreceptor reflex parasympathetic coronary vasodilation in the dog. Am J Physiol 249:H1167–H1175

    Google Scholar 

  • Jacobs M, Plane F, Bruckdorfer KR (1990) Native and oxidized low-density lipoproteins have different inhibitory effects on endothelium-derived relaxing factor in the rabbit aorta. Br J Pharmacol 100:21–26

    Google Scholar 

  • Jie K, van Brummelen P, Vermey P, Timmermans PBMWM, van Zwieten PA (1984) Identification of vascular postsynaptic α1-and α2-adrenoceptors in man. Circ Res 54:447–452

    Google Scholar 

  • Jie K, van Brummelen P, Vermey P, Timmermans PBMWM, van Zwieten PA (1987) Postsynaptic alpha 1-and alpha 2-adrenoceptors in human blood vessels: interactions with exogenous and endogenous catecholamines. Eur J Clin Invest 17:174–181

    Google Scholar 

  • Johannsen UJ, Mark AL, Marcus ML (1982) Responsiveness to cardiac sympathetic nerve stimulation during maximal coronary dilation produced by adenosine. Circ Res 50:510–517

    Google Scholar 

  • Johansson B, Mellander S (1975) Static and dynamic components in the vascular myogenic response to passive changes in length as revealed by electrical and mechanical recordings from the rat portal vein. Circ Res 36:76–83

    Google Scholar 

  • Johnson JR, Di Palma JR (1939) Intramyocardial pressure and its relation to aortic blood pressure. Am J Physiol 125:234–243

    Google Scholar 

  • Jones CE, Liang IYS, Maulsby MR (1986) Cardiac and coronary effects of prazosin and phenoxybenzamine during coronary hypotension. J Pharmacol Exp Ther 236:204–211

    Google Scholar 

  • Jugdutt BI (1981) Effects of prostacyclin, prostaglandin E 1 and E 2 on spontaneous ventricular arrhythmias in infarction. Circulation 64 (Suppl IV):IV-319 (abstract)

    Google Scholar 

  • Jugdutt BI, Hutchins GM, Bulkley BH, Becker LC (1980) Salvage of ischemic myocardium by ibuprofen during infarction in the conscious dog. Am J Cardiol 46:74–82

    Google Scholar 

  • Jugdutt BI, Hutchins GM, Bulkley BH, Becker LC (1981) Dissimilar effects of prostacyclin, prostaglandin E 1 and prostaglandin E 2 on myocardial infarct size after coronary occlusion in conscious dogs. Circ Res 49:685–700

    Google Scholar 

  • Kalsner S (1985) Cholinergic mechanisms in human coronary artery preparations: Implications of species differences. J Physiol 358:509–526

    Google Scholar 

  • Kamiya A, Togawa T (1980) Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am J Physiol 239:H14–H21

    Google Scholar 

  • Kanatsuka H, Lamping KG, Eastham CL, Marcus ML (1990) Heterogenous changes in epimyocardial microvascular size during graded coronary stenosis. Evidence of the microvascular site for autoregulation. Circ Res 66:389–396

    Google Scholar 

  • Kasuya Y, Takuwa Y, Yanagisawa M, Kimura S, Goto K, Masaki T (1989) Endothelin-1 induces vasoconstriction through two functionally distinct pathways in porcine coronary artery: contribution of phosphoinositide turnover. Biochem Biophys Res Comm 161:1049–1055

    Google Scholar 

  • Katori M, Berne RM (1966) Release of adenosine from anoxic hearts. Relationship to coronary flow. Circ Res 19:420–425

    Google Scholar 

  • Kelley KO, Feigl EO (1978) Segmental alpha-receptor-mediated vasoconstriction in the canine coronary circulation. Circ Res 43:908–917

    Google Scholar 

  • Kelm M, Schrader J (1988) Nitric oxide release from the isolated guinea pig heart. Eur J Pharmacol 155:317–321

    Google Scholar 

  • Khayyal MA, Eng C, Franzen D, Breall JA, Kirk ES (1985) Effects of vasopressin on the coronary circulation: reserve and regulation during ischemia. Am J Physiol 248:H516–H522

    Google Scholar 

  • Kjekshus JK (1973) Mechanisms for flow distribution in normal and ischemic myocardium during increased ventricular preload in the dog. Circ Res 33:489–499

    Google Scholar 

  • Klocke FJ (1987) Measurements of coronary flow reserve: defining pathophysiology versus making decisions about patient care. Circulation 76:1183–1189

    Google Scholar 

  • Klocke FJ, Kaiser GA, Ross Jr J, Braunwald E (1965) An intrinsic adrenergic vasodilator mechanism in the coronary vascular bed of the dog. Circ Res 16:376–382

    Google Scholar 

  • Klocke FJ, Weinstein IR, Klocke JF, Ellis AK, Kraus DR, Mates RE, Canty JM, Anbar RD, Romanowski RR, Wallmeyer KW, Echt MP (1981) Zero-flow pressures and pressure-flow relationships during single long diastoles in the canine coronary bed before and during maximum vasodilation. J Clin Invest 68:970–980

    Google Scholar 

  • Knabb RM, Ely SW, Bacchus AN, Rubio R, Berne RM (1983) Consistent parallel relationships among myocardial oxygen consumption, coronary blood flow, and pericardial infusate adenosine concentration with various interventions and β-blockade in the dog. Circ Res 53:33–41

    Google Scholar 

  • Knowles RG, Palacios M, Palmer RMJ, Moncada S (1989) Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase. Proc Natl Acad Sci USA 86:5159–5162

    Google Scholar 

  • Kobinger W, Pichler L (1980) Investigation into different types of post-and presynaptic α-adrenoceptors at cardiovascular sites in rats. Eur J Pharmacol 65:393–402

    Google Scholar 

  • Kobinger W, Pichler L (1981) α1-and α2-adrenoceptor subtypes: selectivity of various agonists and relative distribution of receptors as determined in rats. Eur J Pharmacol 73:313–321

    Google Scholar 

  • Kodama M, Kanaide H, Abe S, Hirano K, Kai H, Nakamura M (1989) Endothelin-induced Ca-independent contraction of the porcine coronary artery. Biochem Biophys Res Comm 160:1302–1308

    Google Scholar 

  • Koltai MZ, Rösen P, Hadhazy P, Ballagi-Pordany G, Köszeghy A, Pogatsa G (1988) Relationship between vascular adrenergic receptors and prostaglandin biosynthesis in canine diabetic coronary arteries. Diabetologia 31: 681–686

    Google Scholar 

  • Kopia GA, Kopaciewicz LJ, Ruffolo Jr RR (1986) Alpha adrenoceptor regulation of coronary artery blood flow in normal and stenotic canine coronary arteries. J Pharmacol Exp Ther 239:641–647

    Google Scholar 

  • Koster PF, Ohlstein EH, Nichols AJ (1989) The effect of intracoronary endothelin on coronary hemodynamics and cardiac function in anesthetized dogs. Faseb J 3:A878 (abstract)

    Google Scholar 

  • Kreuzer H, Schoeppe W (1963) Das Verhalten des Druckes in der Herzwand. Pfluegers Arch 278:181–198

    Google Scholar 

  • Kroll K, Feigl EO (1985) Adenosine is unimportant in controlling coronary blood flow in unstressed dog hearts. Am J Physiol 249:H1176–H1187

    Google Scholar 

  • Kroll K, Schrader J, Piper HM, Henrich M (1987) Release of adenosine and cyclic AMP from coronary endothelium in isolated guinea pig hearts: relation to coronary flow. Circ Res 60:659–665

    Google Scholar 

  • Ku DD (1989) Endothelin produces potent vasoconstriction in isolated human coronary arteries, veins and long-term coronary aortic bypass grafts. Circulation 80 (Suppl II):II-213 (abstract)

    Google Scholar 

  • Kulakowski EC, Lampson WG, Schaffer SW, Lovenberg W (1983) Action of substance P on the working rat heart. Biochem Pharmacol 32:1097–1100

    Google Scholar 

  • Kumpuris AG, Luchi RJ, Waddell CC, Miller RR (1980) Production of circulating platelet aggregates by exercise in coronary patients. Circulation 61:62–65

    Google Scholar 

  • Kuo L, Chilian WM, Davis MJ (1990) Coronary arteriolar myogenic response is independent of endothelium. Circ Res 66:860–866

    Google Scholar 

  • Kurihara H, Yamaoki K, Nagai R, Yoshizumi M, Takaku F, Satoh H, Inui J, Yazaki Y (1989) Endothelin — a potent vasoconstrictor associated with coronary vasospasm. Life Sci 44:1937–1943

    Google Scholar 

  • Kuzuya T, Tada M, Ohmori M, Inui M, Abe H, Yamagishi M, Kodama K (1981) Altered metabolism of thromboxane A2 and prostaglandin I2 in patients with angina pectoris. Circulation 64 (Suppl IV):IV-143 (abstract)

    Google Scholar 

  • Lam LYT, Chesebro JH, Steele PM, Badimon L, Fuster V (1987) Is vasospasm related to platelet deposition? Relationship in a porcine preparation of arterial injury in vivo. Circulation 75:243–248

    Google Scholar 

  • Lamping KG, Dole WP (1987) Acute hypertension selectively potentiates constrictor responses of large coronary arteries to serotonin by altering endothelial function in vivo. Circ Res 61:904–913

    Google Scholar 

  • Lamping KG, Eastham CL (1989) Endothelin: a potent vasoconstrictor in the coronary microcirculation. Circulation 80 (Suppl II):II-212 (abstract)

    Google Scholar 

  • Lamping KG, Kanatsuka H, Eastham CL, Chilian WM, Marcus ML (1989) Nonuniform vasomotor responses of the coronary microcirculation to serotonin and vasopressin. Circ Res 65:343–351

    Google Scholar 

  • Langer GA, Brady AJ (1966) Potassium in dog ventricular muscle: kinetic studies of distribution and effects of varying frequency of contraction and potassium concentration of perfusate. Circ Res 18:164–177

    Google Scholar 

  • Langer SZ (1981) Presynaptic regulation of the release of catecholamines. Pharmacol Rev 32:337–362

    Google Scholar 

  • Langer SZ, Adler-Graschinsky E, Giorgi O (1977) Physiological significance of α-adrenoceptor-mediated negative feedback mechanism regulating noradrenaline release during nerve stimulation. Nature 265:648–650

    Google Scholar 

  • Langille BL, O'Donnel F (1986) Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231:405–407

    Google Scholar 

  • Lansman JB, Hallam TJ, Rink TJ (1987) Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature 325:811–813

    Google Scholar 

  • Larkin SW, Clarke JG, Koegh BE, Araujo L, Rhodes C, Davies GJ, Taylor KM, Maseri A (1989) Intracoronary endothelin induces myocardial ischemia by small vessel constriction in the dog. Am J Cardiol 64:956–958

    Google Scholar 

  • Laxson DD, Dai X-Z, Homans DC, Bache RJ (1989) The role of α1-and α2-adrenergic receptors in mediation of coronary vasoconstriction in hypoperfused ischemic myocardium during exercise. Circ Res 65:1688–1697

    Google Scholar 

  • Levene DL, Freeman MR (1976) α-adrenoceptor-mediated coronary artery spasm. J Am Med Assoc 236:1018–1022

    Google Scholar 

  • Lewis HD, Davis JW, Archibald DG, Steinke WE, Smitherman TC, Doherty JE, Schnaper HW, Le Winter MM, Linares E, Pouget JM, Sabharwal SC, Chesler E, De Mots H (1983) Protective effects of aspirin against acute myocardial infarction and death in men with unstable angina. Results of a veterans administration cooperative study. N Engl J Med 309:396–403

    Google Scholar 

  • Liang C-S, Gavras H, Black J, Sherman LG, Hood Jr WB (1982) Renin-angiotensin system inhibition in acute myocardial infarction in dogs. Circulation 66:1249–1255

    Google Scholar 

  • Liang IYS, Jones CE (1985) Alpha 1-adrenergic blockade increases coronary blood flow during coronary hypoperfusion. Am J Physiol 249:H1070–H1077

    Google Scholar 

  • Linder C, Heusch G (1990) ACE-inhibitors for the treatment of myocardial ischemia? Cardiovasc Drugs Ther (in press)

    Google Scholar 

  • Linder L, Kiowski W, Bühler FR, Lüscher TF (1990) Indirect evidence for the release of endothelium-derived relaxing factor in the human forearm circulation in vivo: blunted response in essential hypertension. Circulation 81:1762–1767

    Google Scholar 

  • Liu JJ, Chen DJ, Casley DJ, Nayler WG (1990a) Effect of ischaemia and reperfusion on 125I endothelin binding in rat cardiac membranes. Am J Physiol 258:H829–H835

    Google Scholar 

  • Lochner W, Nasseri M (1959) Über den venösen Sauerstoffdruck, die Einstellung der Coronardurchblutung und den Kohlenhydratstoffwechsel des Herzens bei Muskelarbeit. Pfluegers Arch 269:407–416

    Google Scholar 

  • Lopez JAG, Armstrong ML, Piegors DJ, Heistad DD (1989) Effect of early and advanced atherosclerosis on vascular responses to serotonin, thromboxane A2, and ADP. Circulation 79:698–705

    Google Scholar 

  • Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, Ganz P (1986) Paradoxial vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 315:1046–1051

    Google Scholar 

  • Lückhoff A, Busse R (1990) Calcium influx into endothelial cells and formation of EDRF is controlled by the membrane potential. Pfluegers Arch 416:305–311

    Google Scholar 

  • Lüscher TF, Vanhoutte PM (1986) Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertension 8:344–348

    Google Scholar 

  • Lüscher TF, Rau L, Vanhoutte PM (1987) Endothelium-dependent vascular responses in normotensive and hypertensive Dahl rats. Hypertension 9:157–163

    Google Scholar 

  • Marcus ML, Wright C, Doty D, Eastham C, Laughlin D, Krumm P, Fastenow C, Brody M (1981) Measurements of coronary velocity and reactive hyperemia in the coronary circulation of humans. Circ Res 49:877–891

    Google Scholar 

  • Margolius HS (1989) Tissue kallikreins and kinins: regulation and roles in hypertensive and diabetic diseases. Annu Rev Pharmacol Toxicol 29:343–364

    Google Scholar 

  • Mark AL, Abboud FM, Schmid PG, Heistad DD, Mayer UJ (1972) Differences in direct effects of adrenergic stimuli on coronary, cutaneous and muscular vessels. J Clin Invest 51:279–287

    Google Scholar 

  • Marletta MA, Yoon PS, Iyengar R, Leaf CD, Wishnok JS (1988) Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 27:8706–8711

    Google Scholar 

  • Marsden PA, Danthuluri NR, Brenner BM, Ballermann BJ, Brock TA (1989) Endothelin action on vascular smooth muscle involves inositol triphosphate and calcium mobilization. Biochem Biophys Res Comm 158:86–93

    Google Scholar 

  • Martin SE, Patterson RE (1989) Coronary constriction due to neuropeptide Y: alleviation with cyclooxygenase blockers. Am J Physiol 257:H927–H934

    Google Scholar 

  • Maruoka Y, McKirnan MD, Engler RL, Longhurst JC (1987) Functional significance of alpha-adrenergic receptors in mature coronary collateral circulation of dogs. Am J Physiol 253:H582–H590

    Google Scholar 

  • Mates RE, Klocke FJ, Canty JM (1988) Coronary capacitance. Prog Cardiovasc Dis 31:1–15

    Google Scholar 

  • Matsuda H, Kuon E, Holtz J, Busse R (1985) Endothelium-mediated dilations contribute to the polarity of the arterial wall in vasomotion induced by alpha 2-adrenergic agonists. J Cardiovasc Pharmacol 7:680–688

    Google Scholar 

  • Matsuzaki M, Patritti J, Tajimi T, Miller M, Kemper WS, Ross Jr J (1984) Effects of β-blockade on regional myocardial flow and function during exercise. Am J Physiol 247:H52–H60

    Google Scholar 

  • McCall TB, Boughton-Smith NK, Palmer RMJ, Whittle BJR, Moncada S (1989) Synthesis of nitric oxide from L-arginine by neutrophils. Biochem J 261:293–296

    Google Scholar 

  • McEwan J, Larkin S, Davies G, Chierchia S, Brown M, Stevenson J, MacIntyre I, Maseri A (1986) Calcitonin gene-related peptide: a potent dilator of human epicardial coronary arteries. Circulation 74:1243–1247

    Google Scholar 

  • McGrath JC (1982) Evidence for more than one type of postjunctional alpha-adrenoceptor. Biochem Pharmacol 31:467–484

    Google Scholar 

  • McHale PA, Dube GP, Greenfield Jr JC (1987) Evidence for myogenic vasomotor activity in the coronary circulation. Prog Cardiovasc Dis 30:139–146

    Google Scholar 

  • McRaven DR, Mark AL, Abboud FM, Mayer HE (1971) Responses of coronary vessels to adrenergic stimuli. J Clin Invest 50:773–778

    Google Scholar 

  • Melkumyants AM, Balashov SA, Veselova ES, Khayutin VM (1987) Continuous control of the lumen of feline conduit arteries by blood flow rate. Cardiovasc Res 21:863–870

    Google Scholar 

  • Melkumyants AM, Balashov SA, Khayutin VM (1989) Endothelium dependent control of arterial diameter by blood viscosity. Cardiovasc Res 23:741–747

    Google Scholar 

  • Mellander S, Johansson B (1968) Control of resistance, exchange, and capacitance functions in the peripheral circulation. Pharmacol Rev 20:117–196

    Google Scholar 

  • Mellander S, Johansson B, Gray S, Jonsson O, Lundvall J, Ljung B (1967) The effects of hyperosmolarity on intact and isolated vascular smooth muscle. Possible role in exercise hyperemia. Angiologica 4:310–322

    Google Scholar 

  • Miller WL, Belardinelli L, Bacchus A, Foley DH, Rubio R, Berne RM (1979) Canine myocardial adenosine and lactate production, oxygen consumption, and coronary blood flow during stellate ganglia stimulation. Circ Res 45:708–718

    Google Scholar 

  • Miwa K, Kambara H, Kawai C (1981) Exercise-induced angina evoked by aspirin administration in patients with variant angina. Am J Cardiol 47:1210–1214

    Google Scholar 

  • Miyauchi T, Yanagisawa M, Tomizawa T, Sugishita Y, Suzuki N, Fujino M, Ajisaka R, Goto K, Masaki T (1989) Increased plasma concentrations of endothelin-1 and big endothelin-1 in acute myocardial infarction. Lancet II:53–54

    Google Scholar 

  • Mohrman DE, Feigl EO (1978) Competition between sympathetic vasoconstriction and metabolic vasodilation in the canine coronary circulation. Circ Res 42:79–86

    Google Scholar 

  • Moncada S, Gryglewski R, Bunting S, Vane JR (1976) An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263:663–665

    Google Scholar 

  • Moncada S, Palmer RMJ, Higgs EA (1989) Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication. Biochem Pharmacol 38:1709–1715

    Google Scholar 

  • Monos E, Cox RH, Peterson LH (1978) Direct effect of physiological doses of arginine vasopressin on the arterial wall in vivo. Am J Physiol 234:H167–H172

    Google Scholar 

  • Mosher P, Ross Jr J, McFate PA, Shaw RF (1964) Control of coronary blood flow by an autoregulatory mechanism. Circ Res 14:250–259

    Google Scholar 

  • Motulsky HJ, Snavely MD, Hughes RJ, Insel PA (1983) Interaction of verapamil and other calcium channel blockers with α1-and α2-adrenergic receptors. Circ Res 52:226–231

    Google Scholar 

  • Motulsky HJ, Maisel AS, Snavely MD, Insel PA (1984) Quinidine is a competitive antagonist at alpha 1-and alpha 2-adrenergic receptors. Circ Res 55:376–381

    Google Scholar 

  • Mudge GH, Grossman W, Mills Jr RM, Lesch M, Braunwald E (1976) Reflex increase in coronary vascular resistance in patients with ischemic heart disease. N Engl J Med 295:1333–1337

    Google Scholar 

  • Mudge GH, Goldberg S, Gunther S, Mann T, Grossman W (1979) Comparison of metabolic and vasoconstrictor stimuli on coronary vascular resistance in man. Circulation 59:544–550

    Google Scholar 

  • Mueller HS, Rao PS, Rao PB, Gory DJ, Mudd JG, Ayres SM (1982) Enhanced transcardiac 1-norepinephrine response during cold pressor test in obstructive coronary artery disease. Am J Cardiol 50:1223–1228

    Google Scholar 

  • Mülsch A, Bassenge E, Busse R (1989) Nitric oxide synthesis in endothelial cytosol: evidence for a calcium-dependent and a calcium-independent mechanism. Naunyn Schmiedebergs Arch Pharmacol 340:767–770

    Google Scholar 

  • Mülsch A, Busse R (1990) NG-nitro-L-arginine (N5-[imino (nitroamino) methyl]-L-ornithine) impairs endothelium-dependent dilations by inhibiting cytosolic nitric oxide synthesis from L-arginine. Naunyn Schmiedebergs Arch Pharmacol 341:143–147

    Google Scholar 

  • Münzel T, Stewart DJ, Holtz J, Bassenge E (1988) Preferential venoconstriction by cyclooxygenase inhibition in vivo without attenuation of nitroglycerin venodilation. Circulation 78:407–415

    Google Scholar 

  • Murphree SS, Saffitz JE (1988) Delineation of the distribution of β-adrenergic receptor subtypes in canine myocardium. Circ Res 63:117–125

    Google Scholar 

  • Murray PA, Vatner SF (1979) α-adrenoceptor attenuation of coronary vascular response to severe exercise in the conscious dog. Circ Res 45:654–660

    Google Scholar 

  • Murray PA, Belloni FL, Sparks HV (1979) The role of potassium in the metabolic control of coronary vascular resistance of the dog. Circ Res 44:767–780

    Google Scholar 

  • Murray PA, Lavallee M, Vatner SF (1984) Alpha-adrenergic-mediated reduction in coronary blood flow secondary to carotid chemoreceptor reflex activation in conscious dogs. Circ Res 54:96–106

    Google Scholar 

  • Mustard JF, Kinlough-Rathbone RL, Packham MA (1983) Aspirin in the treatment of cardiovascular disease: a review. Am J Med 74 (Suppl A6):43–49

    Google Scholar 

  • Myers PR, Banitt PF, Guerra R, Harrison DG (1989) Characteristics of canine coronary resistance arteries: importance of endothelium. Am J Physiol 257:H603–H610

    Google Scholar 

  • Myers P, Minor R, Guarra R, Bates J, Harrison D (1990) Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide. Nature 345: (in press)

    Google Scholar 

  • Nabel EG, Ganz P, Gordon JB, Alexander RW, Selwyn AP (1988a) Dilation of normal and constriction of atherosclerotic coronary arteries caused by the cold pressor test. Circulation 77:43–52

    Google Scholar 

  • Nabel EG, Ganz P, Selwyn AP (1988b) Atherosclerosis impairs flow-mediated dilation in human coronary arteries. Circulation 78 (Suppl II):II-474 (abstract)

    Google Scholar 

  • Nagasawa K, Tomoike H, Hayashi Y, Yamada A, Yamamoto T, Nakamura M (1989) Intramural hemorrhage and endothelial changes in atherosclerotic coronary artery after repetitive episodes of spasm in x-ray-irradiated hypercholesterolemic pigs. Circ Res 65:272–282

    Google Scholar 

  • Nagata M, Pichet R, Lavallee M (1988) Coronary dilation with carotid chemoreceptor stimulation in cardiac-denervated dogs. Am J Physiol 255:H1330–1335

    Google Scholar 

  • Nakane T, Chiba S (1987) Postjunctional α-adrenoceptor subtypes in isolated and perfused canine epicardial coronary arteries. J Cardiovasc Pharmacol 10:651–657

    Google Scholar 

  • Nakane T, Tsujimoto G, Hashimoto K, Chiba S (1988) Beta adrenoceptors in the canine large coronary arteries: beta-1 adrenoceptors predominate in vasodilation. J Pharmacol Exp Ther 245:936–943

    Google Scholar 

  • Nakao K, Saito Y, Matsuyama K, Okumura K, Jougasaki M, Yasue H (1989) Implication of endothelin in variant angina. Circulation 80 (Suppl II):II-586 (abstract)

    Google Scholar 

  • Nathan HJ, Feigl EO (1986) Adrenergic vasoconstriction lessens transmural steal during coronary hypoperfusion. Am J Physiol 250:H645–H653

    Google Scholar 

  • Nellessen U, Lee TC, Fischell TA, Ginsburg R, Masuyama T, Alderman EL, Schroeder JS (1988) Effects of acetylcholine on epicardial coronary arteries after cardiac transplantation without angiographic evidence of fixed graft narrowing. Am J Cardiol 62:1092–1097

    Google Scholar 

  • Nichols WW, Mehta JL, Thompson L, Donnelly WH (1988) Synergistic effects of LTC4 and TxA2 on coronary flow and myocardial function. Am J Physiol 255:H153–H159

    Google Scholar 

  • Nicod P, Winniford MD, Campbell WB, Rehr RB, Firth BG, Hillis LD (1984) Alterations in coronary blood flow induced by cigarette smoking: Lack of relation to plasma arginine vasopressin concentrations. Am J Cardiol 54:667–668

    Google Scholar 

  • Olesen S-P, Clapham DE, Davies PF (1988) Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331:168–170

    Google Scholar 

  • Olsson RA, Bünger R (1987) Metabolic control of coronary blood flow. Prod Cardiovasc Dis 29:369–387

    Google Scholar 

  • Orlick AE, Ricci DR, Alderman EL, Stinson EB, Harrison DC (1978) Effects of alpha adrenergic blockade upon coronary hemodynamics. J Clin Invest 62:459–467

    Google Scholar 

  • Osborne JA, Siegman MJ, Sedar AW, Mooers SU, Lefer AM (1989a) Lack of endothelium-dependent relaxation in coronary resistance arteries of cholesterol-fed rabbits. Am J Physiol 256:C591–C597

    Google Scholar 

  • Osborne JA, Lento PH, Siegfried MR, Stahl GL, Fusman B, Lefer AM (1989b) Cardiovascular effects of acute hypercholesterolemia in in rabbits. J Clin Invest 83:465–473

    Google Scholar 

  • Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Google Scholar 

  • Pantely GA, Bristow JD, Swenson LJ, Ladley HD, Johnson WB, Anselone CG (1985a) Incomplete coronary vasodilation during myocardial ischemia in swine. Am J Physiol 249:H638–H647

    Google Scholar 

  • Pantely GA, Ladley HD, Anselone CG, Bristow JD (1985b) Vasopressin-induced coronary constriction at low perfusion pressures. Cardiovasc Res 19:433–441

    Google Scholar 

  • Panzenbeck MJ, Kaley G (1983) Leukotriene D4 reduces coronary blood flow in the anesthetized dog. Prostaglandins 25:661–670

    Google Scholar 

  • Peters KG, Marcus ML, Harrison DG (1989) Vasopressin and the mature coronary collateral circulation. Circulation 79:1324–1331

    Google Scholar 

  • Pfeffer MA, Pfeffer JM, Steinberg C, Finn P (1985) Survival after an experimental myocardial infarction: beneficial effects of long-term therapy with captopril. Circulation 72:406–412

    Google Scholar 

  • Pitt B, Sugishita Y, Gregg DE (1969a) Coronary hemodynamic effects of calcium in the unanesthetized dog. Am J Physiol 216:1456–1459

    Google Scholar 

  • Pitt B, Mason J, Conti CR, Colman RW (1969b) Activation of the plasma kallikrein during myocardial ischemia. Pharmacol Res Comm 1:185–186

    Google Scholar 

  • Pitt B, Pasyk S, Walton J, Grekin R (1982) tEndogenous arginine vasopressin release in patients with coronary artery spasm. Circulation 66 (Suppl II):II-88 (abstract)

    Google Scholar 

  • Pitt B, Shea MJ, Romson JL, Lucchesi BR (1983) Prostaglandins and prostaglandin inhibitors in ischemic heart disease. Ann Intern Med 99:83–92

    Google Scholar 

  • Pohl U, Busse R (1988) Reduced nutritional blood flow in autoperfused rabbit hindlimbs following inhibition of endothelial vasomotor function. In: Halpern W, Pegram B, Brayden J, Mackey K, McLaughlin M, Osol G (eds) Resistance arteries. Perinatology Press, Ithaca, NY, pp 10–16

    Google Scholar 

  • Pohl U, Busse R (1989a) EDRF increases cyclic GMP in platelets during passage through the coronary vascular bed. Circ Res 65:1798–1803

    Google Scholar 

  • Pohl U, Busse R (1989b) Hypoxia stimulates release of endothelium-derived relaxant factor. Am J Physiol 256:H1595–H1600

    Google Scholar 

  • Pohl U, Busse R (1989c) Differential vascular sensitivity to luminally and adventitially applied endothelin-1. J Cardiovasc Pharmacol 13 [Suppl 5]:S188–S190

    Google Scholar 

  • Pohl U, Holtz J, Busse R, Bassenge E (1986a) Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 8:37–44

    Google Scholar 

  • Pohl U, Busse R, Kuon E, Bassenge E (1986b) Pulsatile perfusion stimulates the release of endothelial autacoids. J Appl Cardiol 1:215–235

    Google Scholar 

  • Pohl U, Herlan K, Huang A, Bassenge E (1990a) EDRF-mediated, shear-induced dilation opposes myogenic vasoconstriction. Am J Physiol (in press)

    Google Scholar 

  • Pohl U, Lamontagne D, Bassenge E, Busse R (1990b) EDRF augments coronary conductivity through attenuation of myogenic autoregulation. Pflügers Arch 414 Suppl 1:R 62 (abstract)

    Google Scholar 

  • Quadt JFA, Voss R, TenHoor F (1982) Prostacyclin production of the isolated pulsatingly perfused rat aorta. J Pharmacol Method 7:263–270

    Google Scholar 

  • Raberger G, Weissel M, Kraupp O (1971) The dependence of the effects of i. cor. administered adenosine and of coronary conductance on the arterial pH, pCO2 and buffer capacity in dogs. Nauny Schmiedebergs Arch Pharmacol 271:301–310

    Google Scholar 

  • Radomski MW, Palmer RMJ, Moncada S (1987a) The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium. Biochem Biophys Res Comm 148:1482–1489

    Google Scholar 

  • Radomski MW, Palmer RMJ, Moncada S (1987b) Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol 92:181–187

    Google Scholar 

  • Radomski MW, Palmer RMJ, Moncada S (1987c) The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol 92:639–646

    Google Scholar 

  • Raff WK, Lochner W (1974) Wirkungsmechanismus von Nitroglycerin. Med Klin 69:1100–1104

    Google Scholar 

  • Raff WK, Kosche F, Lochner W (1971a) Herzfrequenz und extravasale Komponente des Coronarwiderstandes. Pfluegers Arch 323:241–249

    Google Scholar 

  • Raff WK, Kosche F, Lochner W (1971b) Extravasale Komponente des Coronarwiderstandes und Coronardurchblutung bei steigendem enddiastolischen Druck. Pfluegers Arch 327:225–233

    Google Scholar 

  • Raff WK, Kosche F, Lochner W (1971c) Die extravasale Komponente des Coronarwiderstandes bei Steigerung der linksventrikulären Druckanstiegsgeschwindigkeit durch Isoproterenol. Pfluegers Arch 325:323–333

    Google Scholar 

  • Raff WK, Kosche F, Lochner W (1972a) Extravascular coronary resistance and its relation to microcirculation. Am J Cardiol 29:598–603

    Google Scholar 

  • Raff WK, Kosche F, Goebel H, Lochner W (1972b) Coronary extravascular resistance at increasing left ventricular pressure. Pfluegers Arch 333:352–361

    Google Scholar 

  • Rafflenbeul W, Bassenge E, Lichtlen PR (1988) Competition between endothelium-and nitroglycerin-induced coronary vasodilation. Circulation 78 (Suppl II):II-455 (abstract)

    Google Scholar 

  • Raizner AE, Chahine RA, Ishimori T, Verani MS, Zacca N, Jamal N, Miller RR, Luchi RJ (1980) Provocation of coronary artery spasm by the cold pressor test. Circulation 62:925–932

    Google Scholar 

  • Rees DD, Palmer RM, Moncada S (1989) Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA 86:3375–3378

    Google Scholar 

  • Reid JVO, Ito BR, Huang AH, Buffington CW, Feigl EO (1985) Parasympathetic control of transmural coronary blood flow in dogs. Am J Physiol 249:H337–H343

    Google Scholar 

  • Richardt G, Waas W, Kranzhöfer R, Mayer E, Schömig A (1987) Adenosine inhibits exocytotic release of endogeneous noradrenaline in the rat heart: A protective mechanism in early myocardial ischemia. Circ Res 61:117–123

    Google Scholar 

  • Richardt G, Waas W, Kranzhöfer R, Cheng B, Lohse MJ, Schömig A (1989) Interaction between the release of adenosine and noradrenaline during sympathetic stimulation: A feedback mechanism in rat heart. J Mol Cell Cardiol 21:269–277

    Google Scholar 

  • Rimele TJ, Rooke TW, Aarhus LL, Vanhoutte PM (1983) Alpha-1 adrenoceptors and calcium in isolated canine coronary arteries. J Pharmacol Exp Ther 226:668–672

    Google Scholar 

  • Rinkema LE, Thomas Jr JX, Randall WC (1982) Regional coronary vasoconstriction in response to stimulation of stellate ganglia. Am J Physiol 243:H410–H415

    Google Scholar 

  • Robertson RM, Robertson D, Roberts LJ, Maas RL, FitzGerald GA, Friesinger GC, Oates JA (1981) Thromboxane A2 in vasotonic angina pectoris. Evidence from direct measurements and inhibitor trials. N Engl J Med 304:998–1003

    Google Scholar 

  • Robertson RM, Bernard YD, Carr RK, Robertson D (1983) Alpha-adrenergic blockade in vasotonic angina: lack of efficacy of specific alpha-receptor blockade with prazosin. J Am Coll Cardiol 2:1146–1150

    Google Scholar 

  • Rodbard S (1975) Vascular caliber. Cardiology 60:4–49

    Google Scholar 

  • Rosendorff C, Hoffman JIE, Verrier ED, Rouleau J, Boerboom LE (1981) Cholesterol potentiates the coronary artery response to norepinephrine in anesthetized and conscious dogs. Circ Res 48:320–329

    Google Scholar 

  • Ross J, Klocke FJ, Kaiser G, Braunwald E (1963) Effect of alterations of coronary blood flow on the oxygen consumption of the working heart. Circ Res 13:510–513

    Google Scholar 

  • Rouleau J, Boerboom LE, Surjadhana A, Hoffman JIE (1979) The role of autoregulation and tissue diastolic pressures in the transmural distribution of left ventricular blood flow in anesthetized dogs. Circ Res 45:804–815

    Google Scholar 

  • Rousseau MF, Close P, Pouleur H (1989) Are the angiotensin-converting enzyme inhibitors poor anti-ischemic drugs? Circulation 80 (Suppl II):II-52 (abstract)

    Google Scholar 

  • Rubanyi GM, Romero JC, Vanhoutte PM (1986) Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 250:H1145–H1149

    Google Scholar 

  • Rudehill A, Sollevi A, Franco-Cereceda A, Lundberg JM (1986) Neuropeptide Y (NPY) and the pig heart: release and coronary vasoconstrictor effects. Peptides 7:821–826

    Google Scholar 

  • Ruffolo RR, Sulpizio AC, Nichols AJ, DeMarinis RM, Hieble JP (1987) Pharmacologic differentiation between pre-and postjunctional alpha 2-adrenoceptors by SKandF 104078. Naunyn Schmiedebergs Arch Pharmacol 336:415–418

    Google Scholar 

  • Sabbah HN, Stein PD (1982) Effect of acute regional ischemia on pressure in the subepicardium and subendocardium. Am J Physiol 242:H240–H244

    Google Scholar 

  • Sabiston DC, Gregg DE (1957) Effect of cardiac on coronary blood flow. Circulation 15:14–20

    Google Scholar 

  • Saeed M, Sommer O, Holtz J, Bassenge E (1982) α-adrenoceptor blockade by phentolamine causes β-adrenergic vasodilation by increased catecholamine release due to presynaptic α-blockade. J Cardiovasc Pharmacol 4:44–52

    Google Scholar 

  • Saeed M, Holtz J, Elsner D, Bassenge E (1985) Sympathetic control of myocardial oxygen balance in dogs mediated by activation of coronary vascular α2-adrenoceptors. J Cardiovasc Pharmacol 7:167–173

    Google Scholar 

  • Saito D, Steinhart CR, Nixon DG, Olsson RA (1981) Intracoronary adenosine deaminase reduces canine myocardial reactive hyperemia. Circ Res 49:1262–1267

    Google Scholar 

  • Sakuma I, Togashi H, Yoshioka M, Kobayashi T, Saito H, Yasuda H, Gross S, Levi R (1990) Effects of intracisternal and intracisternal administration of L-NG-monomethyl arginine on renal sympathetic nerve activity in anesthetized rats. In: Moncada S, Higgs EA (eds) Nitric oxide from L-arginine, a bioregulatory system. Elsevier, Amsterdam pp 481–482

    Google Scholar 

  • Salminen K, Tikkanen I, Saijonmaa O, Nieminen M, Fyhrquist F, Frick MH (1989) Modulation of coronary tone in acute myocardial infarction by endothelin. Lancet II:747

    Google Scholar 

  • Schipke J, Heusch G, Deussen A, Thaemer V (1985) Acetylcholine induces constriction of epicardial coronary arteries in anesthetized dogs after removal of endothelium. Drug Res 35:926–929

    Google Scholar 

  • Schipke J, Heusch G, Thämer V (1987) Evidence against the adenosine catecholamine antagonism in the canine heart in situ. Drug Res 37:1345–1347

    Google Scholar 

  • Schmid PG, Wendling MG, Mark AL, Eckstein JW, Abboud FM (1970) Coronary vascular response to physiological levels of vasopressin. Circulation 41/42 (Suppl III):III-196 (abstract)

    Google Scholar 

  • Schmid PG, Abboud FM, Wendling MG, Ramberg ES, Mark AL, Heistad DD, Eckstein JW (1974) Regional vascular effects of vasopressin: plasma levels and circulatory responses. Am J Physiol 227:998–1004

    Google Scholar 

  • Schmitz JM, Apprill PG, Buja M, Willerson JT, Campbell WB (1985) Vascular prostaglandin and thromboxane production in a canine model of myocardial ischemia. Circ Res 57:223–231

    Google Scholar 

  • Schrader J (1981) Sites of action and production of adenosine in the heart. In: Burnstock G (ed) Purinergic receptors. Chapman and Hall, London, pp 121–162

    Google Scholar 

  • Schrader J, Deussen A (1988) Free cytosolic adenosine sensitivity signals myocardial hypoxia. In: Acker H (ed) Oxygen sensing in tissue. Springer Berlin Heidelberg New York, pp 165–176

    Google Scholar 

  • Schrader J, Gerlach E (1976) Compartmentation of cardiac adenine nucleotides and formation of adenosine. Pfluegers Arch 367:129–135

    Google Scholar 

  • Schrader J, Rubio R, Berne RM (1975) Inhibition of slow action potentials of guinea pig atrial muscle by adenosine: a possible effect on Ca-influx. J Mol Cell Cardiol 7:427–433

    Google Scholar 

  • Schrader J, Baumann G, Gerlach E (1977) Antiadrenergic action of adenosine in the heart: possible physiological significance. Pfluegers Arch 372:29–35

    Google Scholar 

  • Schrör K (1990) Thromboxane A2 and platelets as mediators of coronary arterial vasoconstriction in myocardial ischemia. Eur Heart J 11 (Suppl B):27–34

    Google Scholar 

  • Schrör K, Ahland B, Weiss P, König E (1988) Stimulation of coronary vascular PGI2 by organic nitrates. Eur Heart J 9 (Suppl A):25–32

    Google Scholar 

  • Schulz R, Heusch G, Oudiz R, Guth BD (1989) Coronary pressure and flow have no independent effect on contractility in anesthetized swine. Faseb J 3:A405 (abstract)

    Google Scholar 

  • Schulz R, Oudiz RJ, Guth BD, Heusch G (1990) Minimal α1-and α2-adrenoceptor mediated coronary vasconstriction in the anaesthetized swine. Naunyn Schmiedebergs Arch 342:422–428

    Google Scholar 

  • Schumacher WA, Heran CL, Goldenberg HJ, Harris DN, Ogletree ML (1989) Magnitude of thromboxane receptor antagonism necessary for antithrombotic activity in monkeys. Am J Physiol 256:H726–H734

    Google Scholar 

  • Schwartz GG, McHale PA, Greenfield JC (1982) Hyperemic response of the coronary circulation to brief diastolic occlusion in the conscious dog. Circ Res 50:28–37

    Google Scholar 

  • Schwartz JS, Carlyle PF, Cohn JN (1980) Effect of coronary arterial pressure on coronary stenosis resistance. Circulation 61:70–76

    Google Scholar 

  • Schwartz PJ, Stone HL (1977) Tonic influence of the sympathetic nervous system on myocardial reactive hyperemia and on coronary blood flow distribution in dogs. Circ Res 41:51–58

    Google Scholar 

  • Scott JB, Radawski D (1971) Role of hyperosmolarity in the genesis of active and reactive hyperemia. Circ Res 28 (Suppl I):I26–I32

    Google Scholar 

  • Seitelberger R, Schütz W, Schlappack O, Raberger G (1984) Evidence against the adenosine-catecholamine antagonism under in vivo conditions. Naunyn Schmiedebergs Arch 325:234–239

    Google Scholar 

  • Seitelberger R, Guth BD, Lee JD, Katayama K, Heusch G, Ross Jr J (1986) Alpha 1 and alpha 2 receptor stimulation in conscious dogs increase coronary resistance but not myocardial function. J Am Coll Cardiol 7 (Suppl A):81A (abstract)

    Google Scholar 

  • Seitelberger R, Guth BD, Heusch G, Lee JD, Katayama K, Ross Jr J (1988) Intracoronary alpha 2-adrenergic receptor blockade attenuates ischemia in conscious dogs during exercise. Circ Res 62:436–442

    Google Scholar 

  • Shimokawa H, Flavahan NA, Vanhoutte PM (1989a) Natural course of the impairment of endothelium-dependent relaxation after balloon endothelium removal in procine coronary arteries: possible dysfunction of a pertussis-sensitive G protein. Circ Res 65:740–753

    Google Scholar 

  • Shimokawa H, Flavahan NA, Sheperd JT, Vanhoutte PM (1989b) Endothelium-dependent inhibition of ergonovine-induced contraction is impaired in procine coronary arteries with regenerated endothelium. Circulation 80:643–650

    Google Scholar 

  • Siegel G, Schneider W (1981) Anions, cations, membrane potential and relaxation. In: Vanhoutte PM, Leusen I (eds) Vasodilatation. Raven, New York, pp 285–305

    Google Scholar 

  • Silberbauer K, Slany J, Sinzinger H, Punzengruber C (1982) Molsidomin, Koronartherapeutikum mit plättchenaggregationshemmender Wirkung. Z Kardiol 71:539–543

    Google Scholar 

  • Simmet T, Peskar BA (1986) Eicosanoids and the coronary circulation. Rev Physiol Biochem Pharmacol 104:1–64

    Google Scholar 

  • Simon BC, Cunningham LD, Cohen RA (1990) Oxidized low density lipoproteins cause contraction and inhibit endothelium-dependent relaxation in pig coronary artery. J Clin Invest 86:75–79

    Google Scholar 

  • Sink JC, Hill RC, Chitwood Jr WR, Abriss R, Wechsler AS (1979) Effects of phenylephrine on transmural distribution of myocardial blood flow in regions supplied by normal and collateral arteries during cardiopulmonary bypass. J Thorac Cardiovasc Surg 78:236–243

    Google Scholar 

  • Smiesko V, Kozik J, Dolezel S (1985) Role of endothelium in the control of arterial diameter by blood flow. Blood Vessels 22:247–251

    Google Scholar 

  • Smith JB, Araki H, Lefer AM (1980) Thromboxane A2, prostacyclin and aspirin: effects on vascular tone and platelet aggregation. Circulation 62 (Suppl V):V19–V25

    Google Scholar 

  • Smitherman TC, Popma JJ, Said SI, Krejs GJ, Dehmer GJ (1989) Coronary hemodynamic effects of intravenous vasoactive intestinal peptide in humans. Am J Physiol 257:H1254–H1262

    Google Scholar 

  • Spaan JAE, Breuls NPW, Laird JD (1981) Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in anesthetized dog. Circ Res 49:584–593

    Google Scholar 

  • Starke K (1981) Alpha-adrenoceptor subclassification. Rev Physiol Biochem Pharmacol 88:199–235

    Google Scholar 

  • Steering Committee of the Physicians' Health Study Research Group (1989) Final report on the aspirin component of the ongoing physicians' health study. N Engl J Med 321:129–135

    Google Scholar 

  • Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–924

    Google Scholar 

  • Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D (1984) Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA 81:3883–3887

    Google Scholar 

  • Stephenson JA, Gibson RE, Summers RJ (1988) An autoradiographic study of muscarinic cholinoceptors in blood vessels: no localization on vascular endothelium. Eur J Pharmacol 153:271–283

    Google Scholar 

  • Stewart DJ, Holtz J, Pohl U, Bassenge E (1987a) Balance between endothelium-mediated dilating and direct constricting actions of serotonin on resistance vessels in the isolated rabbit heart. Eur J Pharmacol 143:131–134

    Google Scholar 

  • Stewart DJ, Münzel T, Bassenge E (1987b) Reversal of acetylcholine-induced coronary resistance vessel dilation by hemoglobin. Eur J Pharmacol 136:239–242

    Google Scholar 

  • Strader JR, Gwirtz PA, Jones CE (1988) Comparative effects of α1-and α2-adrenoceptors in modulation of coronary flow during exercise. J Pharmacol Exp Ther 246:772–778

    Google Scholar 

  • Sugiura M, Inagami T, Kon V (1989) Endotoxin stimulates endothelin-release in vivo and in vitro as determined by radioimmunoassay. Biochem Biophys Res Comm 161:1220–1227

    Google Scholar 

  • Tabuchi Y, Nakamaru M, Rakugi H, Nagano M, Mikami H, Ogihara T (1989) Endothelin inhibits presynaptic adrenergic neurotransmission in rat mesenteric artery. Biochem Biophys Res Comm 161:803–808

    Google Scholar 

  • Tesfamariam B, Cohen RA (1988) Inhibition of adrenergic vasoconstriction by endothelial cell shear stress. Circ Res 63:720–725

    Google Scholar 

  • Tesfamariam B, Weisbrod RM, Cohen RA (1987) Endothelium inhibits responses of rabbit carotid artery to adrenergic nerve stimulation. Am J Physiol 253:H792–H798

    Google Scholar 

  • Thaulow E, Guth BD, Schulz R, Ross Jr J (1989) Selective thromboxane A2 receptor blockade in experimental exercise-induced myocardial ischemia in dogs. Acta Physiol Scand 136:321–330

    Google Scholar 

  • Thiemermann C, Smith III EF, Schrör K (1986) Successful treatment of acute myocardial ischemia with teopranitol — a novel organic nitrate. Eur Heart J 7:418–424

    Google Scholar 

  • Tillmanns H, Ikeda S, Hansen H, Sarma JSM, Fauvel J-M, Bing RJ (1974) Microcirculation in the ventricle of the dog and turtle. Circ Res 34:561–569

    Google Scholar 

  • Toda N (1986) Alpha-adrenoceptor subtypes and diltiazem actions in isolated human coronary arteries. Am J Physiol 250:H718–H724

    Google Scholar 

  • Tomoike H, Egashira K, Yamamoto Y, Nakamura M (1989) Enhanced responsiveness of smooth muscle, impaired endothelium-dependent relaxation and the genesis of coronary spasm. Am J Cardiol 63:33E–39E

    Google Scholar 

  • Toyo-oka T, Aizawa T, Suzuki N, Hirata Y, Miyauchi T, Yanagisawa M, Masaki T (1989) Contribution of endothelin (ET) and atrial natriuretic factor (ANF) to coronary spasm in patients with vasospastic angina. Circulation 80 (Suppl II):II-126 (abstract)

    Google Scholar 

  • Tzivoni D, Keren A, Benhorin J, Gottlieb S, Atlas D, Stern S (1983) Prazosin therapy for refractory variant angina. Am Heart J 105:262–266

    Google Scholar 

  • Uchida Y, Murao S (1974) Cyclic changes in peripheral blood pressure of partially constricted coronary artery. Jpn Coll Angiol 14:383–393

    Google Scholar 

  • Van Gilst WH, van Wijngaarden J, Scholtens E, de Graeff PA, de Langen CDJ, Wesseling H (1987) Captopril-induced increase in coronary flow: an SH-dependent effect on arachidonic acid metabolism? J Cardiovasc Pharmacol 9 (Suppl 2):S31–S36

    Google Scholar 

  • Van Gilst WH, Tio RA, de Graeff PA, van Wijngaarden J, Scholtens E, de Langen CDJ, Wesseling H (1989) Antiischämische Wirkungen von Conversions-Enzym-Hemmern. Muench Med Wschr 131 (Suppl 1):S27–S30

    Google Scholar 

  • Vanhoutte PM (1987) Endothelium and the control of vascular tissue. News Pharmacol Sci 2:18–22

    Google Scholar 

  • Vanhoutte PM (1988) The endothelium and control of coronary arterial tone. Hosp Pract 77–94

    Google Scholar 

  • Vanhoutte PM, Houston DS (1985) Platelets, endothelium, and vasospasm. Circulation 72:728–734

    Google Scholar 

  • Vanhoutte PM, Katusic ZS, Shepherd JT (1984) Vasopressin induces endothelium-dependent relaxations of cerebral and coronary, but not of systemic arteries. J Hypertension 2 (Suppl 3):421–422

    Google Scholar 

  • Van Meel JCA, de Jonge A, Timmermans PBMWM, van Zwieten PA (1981) Selectivity of some alpha adrenoceptor agonists for peripherial alpha1-and alpha2-adrenoceptors in the normotensive rat. J Pharmacol Exp Ther 219:760–767

    Google Scholar 

  • Van Winkle DM, Feigl EO (1989) Acetylcholine causes coronary vasodilation in dogs and baboons. Circ Res 65:1580–1593

    Google Scholar 

  • Van Zwieten PA, Timmermans PBMWM (1983) Cardiovascular α2-receptors. J Mol Cell Cardiol 15:717–733

    Google Scholar 

  • Vatner DE, Knight DR, Homcy CJ, Vatner SF, Young MA (1986) Subtypes of β-adrenergic receptors in bovine coronary arteries. Circ Res 59:463–473

    Google Scholar 

  • Vatner SF (1980) Correlation between acute reductions in myocardial blood flow and function in conscious dogs. Circ Res 47:201–207

    Google Scholar 

  • Vatner SF, Hintze TH (1983) Mechanism of constriction of large coronary arteries by β-adrenergic receptor blockade. Circ Res 53:389–400

    Google Scholar 

  • Vatner SF, McRitchie RJ (1975) Interaction of the chemoreflex and the pulmonary inflation reflex in the regulation of coronary circulation in conscious dogs. Circ Res 37:664–673

    Google Scholar 

  • Vatner SF, Hintze TH, Macho P (1982) Regulation of large coronary arteries by β-adrenergic mechanisms in the conscious dog. Circ Res 51:56–66

    Google Scholar 

  • Vekshtein VI, Yeung AC, Vita JA, Nabel EG, Fish RD, Bittl JA, Selwyn AP, Ganz P (1989) Fish oil improves endothelium-dependent relaxation in patients with coronary artery disease. Circulation 80 (Suppl II):II-434 (abstract)

    Google Scholar 

  • Verbeuren TJ, Jordaens FH, Zonnekeyn LL, Van Hove CE, Coene MC, Herman AG (1986) Effect of hypercholesterolemia on vascular reactivity in the rabbit I. Endothelium-dependent and endothelium-independent contractions and relaxations in isolated arteries of control and hypercholesterolemic rabbits. Circ Res 58:552–564

    Google Scholar 

  • Verbeuren TJ, Jordaens FH, Van Hove CE, von Hoydonck AE, Herman AG (1990) Release and vascular activity of the endothelium-derived relaxing factor in atherosclerotic aorta. Eur J Pharmacol (in press)

    Google Scholar 

  • Vita JA, Treasure CB, Nabel EG, McLenachan JM, Fish RD, Yeung AC, Vekshtein VI, Selwyn AP, Ganz P (1990) Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation 81:491–497

    Google Scholar 

  • Vlahakes GJ, Baer RW, Uhlig PN, Verrier ED, Bristow JD, Hoffman JIE (1982) Adrenergic influence in the coronary circulation of conscious dogs during maximal vasodilation with adenosine. Circ Res 51:371–384

    Google Scholar 

  • Von Restorff W, Bassenge E (1977) Transient effects of norepinephrine on myocardial oxygen balance. Pfluegers Arch 370:131–137

    Google Scholar 

  • Von Restorff W, Holtz J, Bassenge E (1977) Exercise induced augmentation of myocardial oxygen extraction in spite of normal coronary dilatory capacity in dogs. Pfluegers Arch 372:181–185

    Google Scholar 

  • Vrints C, Verbeuren TJ, Snoeck J, Herman AG (1990) Effects of hypercholesterolemia on coronary vascular reactivity. In: Rubanyi GM, Vanhoutte PM (eds) Endothelium-derived contracting factors. Karger, Basel, pp 162–168

    Google Scholar 

  • Wainwright CL, Parratt JR (1988) The effect of L655,240, a selective thromboxane and prostaglandin endoperoxide antagonist, on ischemia-and reperfusion-induced cardiac arrhythmias. J Cardiovasc Pharmacol 12:264–271

    Google Scholar 

  • Wang H-H, Katz RL (1965) Effects of changes in coronary blood pH on the heart. Circ Res 17:114–122

    Google Scholar 

  • Wargovich T, Mehta J, Nichols WW, Pepine CJ, Conti CR (1985) Reduction in blood flow in normal and narrowed coronary arteries of dogs by leukotriene C4. J Am Coll Cardiol 6:1047–1051

    Google Scholar 

  • Weitzell R, Tanaka T, Starke K (1979) Pre-and postsynaptic effects of yohimbine stereoisomers on noradrenergic transmission in the pulmonary artery of the rabbit. Naunyn Schmiedebergs Arch Pharmacol 308:127–136

    Google Scholar 

  • Wennmalm A, Lanne B, Petersson A-S (1990) Detection of endothelium-derived relaxing factor in human plasma in the basal state and following ischemia using electron paramagnetic resonance spectrometry. Anal Biochem 197: (in press)

    Google Scholar 

  • Werns SW, Walton JA, Hsia HH, Nabel EG, Sanz ML, Pitt B (1989) Evidence of endothelial dysfunction in angiographically normal coronary arteries of patients with coronary artery disease. Circulation 79:287–291

    Google Scholar 

  • Wiggers CJ (1954) The interplay of coronary vascular resistance and myocardial compression in regulating coronary flow. Circ Res 2:271–279

    Google Scholar 

  • Wilson FR, Marcus ML, White CW (1988) Pulmonary inflation reflex: its lack of physiological significance in coronary circulation of humans. Am J Physiol 255:H866–H871

    Google Scholar 

  • Wilson FR, Lesser JR, Laxson DD, White CW (1989) Intense microvascular constriction after angioplasty of acute thrombotic coronary arterial lesions. Lancet I:807–811

    Google Scholar 

  • Winniford MD, Filipchuk N, Hillis LD (1983) Alpha-adrenergic blockade for variant angina: a long-term, double-blind, randomized trial. Circulation 67:1185–1188

    Google Scholar 

  • Woodman OL, Vatner SF (1987) Coronary vasoconstriction mediated by α1-and α2-adrenoceptors in conscious dogs. Am J Physiol 253:H388–H393

    Google Scholar 

  • Wright CD, Mülsch A, Busse R, Osswald H (1989) Generation of nitric oxide by human neutrophils. Biochem Biophys Res Comm 160:813–819

    Google Scholar 

  • Wright CE, Angus JA (1986) Effects of hypertension and hypercholesterolemia on vasodilatation in the rabbit. Hypertension 8:361–371

    Google Scholar 

  • Wüsten B, Buss DD, Deist H, Schaper W (1977) Dilatory capacity of the coronary circulation and its correlation to the arterial vasculature in the canine left ventricle. Basic Res Cardiol 72:636–650

    Google Scholar 

  • Yamaguchi N, DeChamplain J, Nadeau RA (1977) Regulation of norephinephrine release from cardiac sympathetic fibers in the dog by presynaptic α-and β-receptors. Circ Res 41:108–117

    Google Scholar 

  • Yamamoto Y, Tomoike H, Egashira K, Nakamura M (1987a) Attenuation of endothelium-related relaxation and enhanced responsiveness of vascular smooth muscle to histamine in spastic coronary arterial segments from miniature pigs. Circ Res 61:772–778

    Google Scholar 

  • Yamamoto Y, Tomoike H, Egashira K, Kobayashi T, Kawasaki T, Nakamura M (1987b) Pathogenesis of coronary artery spasm in miniature swine with regional intimal thickening after balloon denudation. Circ Res 60:113–121

    Google Scholar 

  • Yanagisawa M, Masaki T (1989a) Molecular biology and biochemistry of the endothelins. Trends Pharmacol Sci 10:374–378

    Google Scholar 

  • Yanagisawa M, Masaki T (1989b) Endothelin, a novel endothelium-derived peptide. Pharmacological activities, regulation and possible roles in cardiovascular control. Biochem Pharmacol 38:1877–1883

    Google Scholar 

  • Yanagisawa M, Kurihara H, Kimura S, Goto K, Masaki T (1988) Endothelium-derived novel vasoconstrictor peptide endothelin: a possible endogenous agonist for voltage-dependent Ca2+ channels. In: Morad M, Nayler W, Kazda S, Schramm M (eds) The calcium channel: structure, function and implications. Springer, Berlin Heidelberg New York, pp 575–585

    Google Scholar 

  • Yasue H, Touyama M, Kato H, Tanaka S, Akiyama F (1976) Prinzmetal's variant form of angina as a manifestation of alpha-adrenergic receptor-mediated coronary artery spasm: documentation by coronary arteriography. Am Heart J 91:148–155

    Google Scholar 

  • Ylä-Herttuala S, Palinski W, Rosenfeld ME, Parthasarathy S, Carew TE, Butler S, Witztum JL, Steinberg D (1989) Evidence for the presence of oxidatively modified low density lipoproteins in atherosclerotic lesions of rabbit and man. J Clin Invest 84:1086–1095

    Google Scholar 

  • Yoshizumi M, Kurihara H, Sugiyama T, Takaku F, Yanagisawa M, Masaki T, Yazaki Y (1989) Hemodynamic shear stress stimulates endothelin production by cultured endothelial cells. Biochem Biophys Res Comm 161:859–864

    Google Scholar 

  • Young MA, Knight DR, Vatner SF (1987) Autonomic control of large coronary arteries and resistance vessels. Prog Cardiovasc Dis 30:211–234

    Google Scholar 

  • Young MA, Knight DR, Vatner SF (1988a) Parasympathetic coronary vasoconstriction induced by nicotine in conscious calves. Circ Res 62:891–895

    Google Scholar 

  • Young MA, Vatner DE, Knight DR, Graham RM, Homcy CJ, Vatner SF (1988b) α-adrenergic vasoconstriction and receptor subtypes in large coronary arteries of calves. Am J Physiol 255:H1452–H1459

    Google Scholar 

  • Zeiher AM, Drexler H, Wollschläger H, Just H (1989a) Preserved flow-mediated vasodilation despite acetylcholine-induced vasoconstriction in atherosclerotic coronary arteries in man. J Am Coll Cardiol 13 (Suppl A):132A (abstract)

    Google Scholar 

  • Zeiher AM, Drexler H, Wollschlaeger H, Saurbier B, Just H (1989b) Coronary vasomotion in response to sympathetic stimulation in humans: importance of the functional integrity of the endothelium. J Am Coll Cardiol 14:1181–1190

    Google Scholar 

  • Zimmerman BG (1978) Actions of angiotensin on adrenergic nerve endings. Fed Proc 37:199–202

    Google Scholar 

  • Zucker IH, Cornish KG, Hackley J, Bliss K (1987) Effects of left ventricular receptor stimulation on coronary blood flow in conscious dogs. Circ Res 61 (Suppl II):II54–II60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this chapter

Cite this chapter

Bassenge, E., Heusch, G. (1990). Endothelial and neuro-humoral control of coronary blood flow in health and disease. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 116. Reviews of Physiology, Biochemistry and Pharmacology, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3540528806_4

Download citation

  • DOI: https://doi.org/10.1007/3540528806_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52880-7

  • Online ISBN: 978-3-540-47169-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics