Skip to main content

Biomimetic Complexes for Production of Dihydrogen and Reduction of CO2

  • Chapter
  • First Online:
Homo- and Heterobimetallic Complexes in Catalysis

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 59))

Abstract

The active sites of several bioenergetically important metalloenzymes that perform multielectron redox reactions feature heterobimetallic complexes. Herein, we review recent understanding of the structure and mechanisms of hydrogenases, formate dehydrogenases, and carbon monoxide dehydrogenases. Then we evaluate progress toward creating functional, small-molecule complexes that reproduce the activities of these active sites. Particular emphasis is placed on comparing catalytic properties including turnover number, turnover frequency, required overpotential, and catalyst stability. Opportunities and challenges for future work are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

adtBn :

(SCH2)2NBn

bdt:

benzene-1,2-dithiolate

bpy:

bipyridyl

CB:

conduction band

CODH:

carbon monoxide dehydrogenase

Cy:

cyclohexyl

DFT:

density functional theory

dmg:

dimethylgloxime

dppe:

1,2-bis(diphenylphosphino)ethane

dppf:

1,1′-bis(diphenylphosphino)ferrocene

dppv:

cis-1,2-bis(diphenylphosphino)ethylene

EXAFS:

Extended X-ray Absorption Fine Structure

FDH:

formate dehydrogenase

Gly:

glycine

HER:

hydrogen evolution reaction

HOMO:

highest occupied molecular orbital

LUMO:

lowest unoccupied molecular orbital

MeCN:

acetonitrile

pdt:

1,3-propanedithiol

PFc*Et 2 :

Et2PCH2C5Me4FeCp*

PRNPh 2 :

1,5-diaza-3,7-diphosphaoctane

RHE:

reversible hydrogen electrode

TD-DFT:

time-dependent density functional theory

TFA:

trifluoroacetic acid

VB:

valence band

References

  1. Dewar MJ, Storch DM (1985) Alternative view of enzyme reactions. Proc Natl Acad Sci U S A 82(8):2225–2229

    Article  CAS  Google Scholar 

  2. Warshel A, Sharma PK, Kato M, Xiang Y, Liu H (2006) Electrostatic basis for enzyme catalysis. Chem Rev 106(8):3210–3235. doi:10.1021/cr0503106

    Article  CAS  Google Scholar 

  3. Albery WJ, Knowles JR (1976) Free-energy profile of the reaction catalyzed by triosephosphate isomerase. Biochemistry 15(25):5627–5631. doi:10.1021/bi00670a031

    Article  CAS  Google Scholar 

  4. Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461(7263):472–475. doi:10.1038/461472a

    Article  CAS  Google Scholar 

  5. Lubitz W, Ogata H, Ruediger O, Reijerse E (2014) Hydrogenases. Chem Rev 114:4081–4148. doi:10.1021/cr4005814

    Article  CAS  Google Scholar 

  6. Hiromoto T, Warkentin E, Moll J, Ermler U, Shima S (2009) The crystal structure of an [Fe]-hydrogenase-substrate complex reveals the framework for H2 activation. Angew Chem Int Ed 48:6457–6460. doi:10.1002/anie.200902695

    Article  CAS  Google Scholar 

  7. Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (2007) Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev 107(10):4273–4303. doi:10.1021/cr050195z

    Article  CAS  Google Scholar 

  8. Silakov A, Wenk B, Reijerse E, Lubitz W (2009) 14N HYSCORE investigation of the H-cluster of [FeFe]-hydrogenase: evidence for a nitrogen in the dithiol bridge. Phys Chem Chem Phys 11:6592–6599. doi:10.1039/b905841a

    Article  CAS  Google Scholar 

  9. Esselborn J, Lambertz C, Adamska-Venkatesh A, Simmons T, Berggren G, Nothl J, Siebel J, Hemschemeier A, Artero V, Reijerse E, Fontecave M, Lubitz W, Happe T (2013) Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic. Nat Chem Biol 9:607–609. doi:10.1038/nchembio.1311

    Article  CAS  Google Scholar 

  10. Liu T, DuBois DL, Bullock RM (2013) An iron complex with pendent amines as a molecular electrocatalyst for oxidation of hydrogen. Nat Chem 5:228–233. doi:10.1038/nchem.1571

    Article  CAS  Google Scholar 

  11. Wilson AD, Newell RH, McNevin MJ, Muckerman JT, DuBois MR, DuBois DL (2006) Hydrogen oxidation and production using nickel-based molecular catalysts with positioned proton relays. J Am Chem Soc 128:358–366. doi:10.1021/ja056442y

    Article  CAS  Google Scholar 

  12. Nicolet Y, Lemon BJ, Fontecilla-Camps JC, Peters JW (2000) A novel [FeS] cluster in Fe-only hydrogenases. Trends Biochem Sci 25:138–143. doi:10.1016/s0968-0004(99)01536-4

    Article  CAS  Google Scholar 

  13. Schilter D, Rauchfuss TB, Stein M (2012) Connecting [NiFe]- and [FeFe]-hydrogenases: mixed-valence nickel-iron dithiolates with rotated structures. Inorg Chem 51:8931–8941. doi:10.1021/ic300910r

    Article  CAS  Google Scholar 

  14. Hexter SV, Grey F, Happe T, Climent V, Armstrong FA (2012) Electrocatalytic mechanism of reversible hydrogen cycling by enzymes and distinctions between the major classes of hydrogenases. Proc Natl Acad Sci U S A 109:11516–11521. doi:10.1073/pnas.1204770109

    Article  CAS  Google Scholar 

  15. Hajj V, Baffert C, Sybirna K, Meynial-Salles I, Soucaille P, Bottin H, Fourmond V, Léger C (2014) [FeFe]-hydrogenase reductive inactivation and implication for catalysis. Energy Environ Sci 7:715–719. doi:10.1039/c3ee42075b

    Article  CAS  Google Scholar 

  16. Adamska A, Silakov A, Lambertz C, Rudiger O, Happe T, Reijerse E, Lubitz W (2012) Identification and characterization of the “super-reduced” state of the H-cluster in [FeFe]-hydrogenase: a new building block for the catalytic cycle? Angew Chem Int Ed 51:11458–11462. doi:10.1002/anie.201204800

    Article  CAS  Google Scholar 

  17. Mulder DW, Ratzloff MW, Shepard EM, Byer AS, Noone SM, Peters JW, Broderick JB, King PW (2013) EPR and FTIR analysis of the mechanism of H2 activation by [FeFe]-hydrogenase HydA1 from Chlamydomonas reinhardtii. J Am Chem Soc 135:6921–6929. doi:10.1021/ja4000257

    Article  CAS  Google Scholar 

  18. Evans RM, Parkin A, Roessler MM, Murphy BJ, Adamson H, Lukey MJ, Sargent F, Volbeda A, Fontecilla-Camps JC, Armstrong FA (2013) Principles of sustained enzymatic hydrogen oxidation in the presence of oxygen - the crucial influence of high potential Fe-S clusters in the electron relay of [NiFe]-hydrogenases. J Am Chem Soc 135:2694–2707. doi:10.1021/ja311055d

    Article  CAS  Google Scholar 

  19. Lemon BJ, Peters JW (1999) Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum. Biochemistry 38(40):12969–12973. doi:10.1021/bi9913193

    Article  CAS  Google Scholar 

  20. Pandelia ME, Ogata H, Lubitz W (2010) Intermediates in the catalytic cycle of [NiFe] hydrogenase: functional spectroscopy of the active site. ChemPhysChem 11:1127–1140. doi:10.1002/cphc.200900950

    Article  CAS  Google Scholar 

  21. Shafaat HS, Rudiger O, Ogata H, Lubitz W (2013) [NiFe]-hydrogenases: a common active site for hydrogen metabolism under diverse conditions. Bioenergetics 1827:986–1002. doi:10.1016/j.bbabio.2013.01.015

    Article  CAS  Google Scholar 

  22. Ogata H, Hirota S, Nakahara A, Komori H, Shibata N, Kato T, Kano K, Higuchi Y (2005) Activation process of [NiFe]-hydrogenase elucidated by high-resolution X-Ray analyses: conversion of the ready to the unready state. Structure 13:1635–1642. doi:10.1016/j.str.2005.07.018

    Article  CAS  Google Scholar 

  23. Montet Y, Amara P, Volbeda A, Vernede X, Hatchikian EC, Field MJ, Frey M, Fontecilla-Camps JC (1997) Gas access to the active site of [NiFe]-hydrogenases probed by X-Ray crystallography and molecular dynamics. Nat Struct Mol Biol 4:523–526. doi:10.1038/nsb0797-523

    Article  CAS  Google Scholar 

  24. Liebgott PP, de Lacey AL, Burlat B, Cournac L, Richaud P, Brugna M, Fernandez VM, Guigliarelli B, Rousset M, Léger C, Dementin S (2011) Original design of an oxygen-tolerant [NiFe]-hydrogenase: major effect of a valine-to-cysteine mutation near the active site. J Am Chem Soc 133:986–997. doi:10.1021/ja108787s

    Article  CAS  Google Scholar 

  25. Volbeda A, Amara P, Darnault C, Mouesca J-M, Parkin A, Roessler MM, Armstrong FA, Fontecilla-Camps JC (2012) X-Ray crystallographic and computational studies of the O2-tolerant [NiFe]-hydrogenase 1 from Escherichia coli. Proc Natl Acad Sci U S A 109:5305–5310. doi:10.1073/pnas.1119806109

    Article  CAS  Google Scholar 

  26. Pandelia M-E, Bykov D, Izsak R, Infossi P, Giudici-Orticoni M-T, Bill E, Neese F, Lubitz W (2013) Electronic structure of the unique [4Fe-3S] cluster in O2-tolerant hydrogenases characterized by 57Fe mössbauer and EPR spectroscopy. Proc Natl Acad Sci U S A 110:483–488. doi:10.1073/pnas.1202575110

    Article  CAS  Google Scholar 

  27. Dementin S, Burlat B, De Lacey AL, Pardo A, Adryanczyk-Perrier G, Guigliarelli B, Fernandez VM, Rousset M (2004) A glutamate is the essential proton transfer gate during the catalytic cycle of the [NiFe]-hydrogenase. J Biol Chem 279:10508–10513. doi:10.1074/jbc.M312716200

    Article  CAS  Google Scholar 

  28. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113:6621–6658. doi:10.1021/cr300463y

    Article  CAS  Google Scholar 

  29. Can M, Armstrong FA, Ragsdale SW (2014) Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase. Chem Rev 114:4149–4174. doi:10.1021/cr400461p

    Article  CAS  Google Scholar 

  30. Svetlitchnyi V, Peschel C, Acker G, Meyer O (2001) Two membrane-associated [NiFeS]-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium Carboxydothermus hydrogenoformans. J Bacteriol 183:5134–5144. doi:10.1128/jb.183.17.5134-5144.2001

    Article  CAS  Google Scholar 

  31. Zhang B, Hemann CF, Hille R (2010) Kinetic and spectroscopic studies of the [molybdenum-copper] CO dehydrogenase from Oligotropha carboxidovorans. J Biol Chem 285:12571–12578. doi:10.1074/jbc.M109.076851

    Article  CAS  Google Scholar 

  32. Dobbek H, Gremer L, Kiefersauer R, Huber R, Meyer O (2002) Catalysis at a dinuclear CuSMo(==O)OH cluster in a CO dehydrogenase resolved at 1.1-angstrom resolution. Proc Natl Acad Sci U S A 99:15971–15976. doi:10.1073/pnas.212640899

    Article  CAS  Google Scholar 

  33. Hofmann M, Kassube JK, Graf T (2005) The mechanism of Mo-/Cu-dependent CO dehydrogenase. J Biol Inorg Chem 10:490–495. doi:10.1007/s00775-005-0661-5

    Article  CAS  Google Scholar 

  34. Jeoung J-H, Dobbek H (2007) Carbon dioxide activation at the Ni, Fe-cluster of anaerobic carbon monoxide dehydrogenase. Science 318:1461–1464. doi:10.1126/science.1148481

    Article  CAS  Google Scholar 

  35. Russell WK, Lindahl PA (1998) CO/CO2 potentiometric titrations of carbon monoxide dehydrogenase from Clostridium thermoaceticum and the effect of CO2. Biochemistry 37:10016–10026. doi:10.1021/bi980149b

    Article  CAS  Google Scholar 

  36. Majumdar A, Sarkar S (2011) Bioinorganic chemistry of molybdenum and tungsten enzymes: a structural-functional modeling approach. Coord Chem Rev 255:1039–1054. doi:10.1016/j.ccr.2010.11.027

    Article  CAS  Google Scholar 

  37. Jormakka M, Tornroth S, Byrne B, Iwata S (2002) Molecular basis of proton motive force generation: structure of formate dehydrogenase-N. Science 295:1863–1868. doi:10.1126/science.1068186

    Article  Google Scholar 

  38. George GN, Costa C, Moura JJG, Moura I (1999) Observation of ligand-based redox chemistry at the active site of a molybdenum enzyme. J Am Chem Soc 121:2625–2626. doi:10.1021/ja9841761

    Article  CAS  Google Scholar 

  39. Rivas MG, Gonzalez PJ, Brondino CD, Moura JJG, Moura I (2007) EPR characterization of the molybdenum(V) forms of formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774 upon formate reduction. J Inorg Biochem 101:1617–1622. doi:10.1016/j.jinorgbio.2007.04.011

    Article  CAS  Google Scholar 

  40. Bevers LE, Hagedoorn PL, Hagen WR (2009) The bioinorganic chemistry of tungsten. Coord Chem Rev 253:269–290. doi:10.1016/j.ccr.2008.01.017

    Article  CAS  Google Scholar 

  41. Raaijmakers HCA, Romao MJ (2006) Formate-reduced E. coli formate dehydrogenase H: the reinterpretation of the crystal structure suggests a new reaction mechanism. J Biol Inorg Chem 11:849–854. doi:10.1007/s00775-006-0129-2

    Article  CAS  Google Scholar 

  42. Cerqueira NMFSA, Fernandes PA, Gonzalez PJ, Moura JJG, Ramos MJ (2013) The sulfur shift: an activation mechanism for periplasmic nitrate reductase and formate dehydrogenase. Inorg Chem 52:10766–10772. doi:10.1021/ic3028034

    Article  CAS  Google Scholar 

  43. Axley MJ, Bock A, Stadtman TC (1991) Catalytic properties of an Escherichia coli formate dehydrogenase mutant in which sulfur replaces selenium. Proc Natl Acad Sci U S A 88:8450–8454. doi:10.1073/pnas.88.19.8450

    Article  CAS  Google Scholar 

  44. Mota CS, Rivas MG, Brondino CD, Moura I, Moura JJG, Gonzalez PJ, Cerqueira NMFSA (2011) The mechanism of formate oxidation by metal-dependent formate dehydrogenases. J Biol Inorg Chem 16:1255–1268. doi:10.1007/s00775-011-0813-8

    Article  CAS  Google Scholar 

  45. Raaijmakers H, Macieira S, Dias JM, Teixeira S, Bursakov S, Huber R, Moura JJG, Moura I, Romao MJ (2002) Gene sequence and the 1.8 angstrom crystal structure of the tungsten-containing formate dehydrogenase from Desulfovibrio gigas. Structure 10:1261–1272. doi:10.1016/s0969-2126(02)00826-2

    Article  CAS  Google Scholar 

  46. Jones AK, Sillery E, Albracht SPJ, Armstrong FA (2002) Direct comparison of the electrocatalytic oxidation of hydrogen by an enzyme and a platinum catalyst. Chem Commun 8:866–867. doi:10.1039/b201337a

    Article  CAS  Google Scholar 

  47. Madden C, Vaughn MD, Díez-Pérez I, Brown KA, King PW, Gust D, Moore AL, Moore TA (2012) Catalytic turnover of [FeFe]-hydrogenase based on single-molecule imaging. J Am Chem Soc 134(3):1577–1582. doi:10.1021/ja207461t

    Article  CAS  Google Scholar 

  48. Barton BE, Whaley CM, Rauchfuss TB, Gray DL (2009) Nickel-iron dithiolato hydrides relevant to the [NiFe]-hydrogenase active site. J Am Chem Soc 131(20):6942–6943. doi:10.1021/ja902570u

    Article  CAS  Google Scholar 

  49. Canaguier S, Field M, Oudart Y, Pecaut J, Fontecave M, Artero V (2010) A structural and functional mimic of the active site of NiFe hydrogenases. Chem Commun 46(32):5876–5878. doi:10.1039/c001675f

    Article  CAS  Google Scholar 

  50. Cui H-H, Wang J-Y, Hu M-Q, Ma C-B, Wen H-M, Song X-W, Chen C-N (2013) Efficient photo-driven hydrogen evolution by binuclear nickel catalysts of different coordination in noble-metal-free systems. Dalton Trans 42(24):8684–8691. doi:10.1039/c3dt50140j

    Article  CAS  Google Scholar 

  51. Barton BE, Rauchfuss TB (2010) Hydride-containing models for the active site of the nickel-iron hydrogenases. J Am Chem Soc 132(42):14877–14885. doi:10.1021/ja105312p

    Article  CAS  Google Scholar 

  52. Carroll ME, Barton BE, Gray DL, Mack AE, Rauchfuss TB (2011) Active-site models for the nickel–iron hydrogenases: effects of ligands on reactivity and catalytic properties. Inorg Chem 50(19):9554–9563. doi:10.1021/ic2012759

    Article  CAS  Google Scholar 

  53. Huynh MT, Schilter D, Hammes-Schiffer S, Rauchfuss TB (2014) Protonation of nickel–iron hydrogenase models proceeds after isomerization at nickel. J Am Chem Soc 136(35):12385–12395. doi:10.1021/ja505783z

    Article  CAS  Google Scholar 

  54. Tard C, Pickett CJ (2009) Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem Rev 109(6):2245–2274. doi:10.1021/cr800542q

    Article  CAS  Google Scholar 

  55. Darensbourg MY, Lyon EJ, Zhao X, Georgakaki IP (2003) The organometallic active site of [Fe]-hydrogenase: models and entatic states. Proc Natl Acad Sci U S A 100(7):3683–3688. doi:10.1073/pnas.0536955100

    Article  CAS  Google Scholar 

  56. Roy S, Groy TL, Jones AK (2013) Biomimetic model for [FeFe]-hydrogenase: asymmetrically disubstituted diiron complex with a redox-active 2,2′-bipyridyl ligand. Dalton Trans 42(11):3843–3853. doi:10.1039/c2dt32457a

    Article  CAS  Google Scholar 

  57. Roy S, Mazinani SKS, Groy TL, Gan L, Tarakeshwar P, Mujica V, Jones AK (2014) Catalytic hydrogen evolution by Fe(II) carbonyls featuring a dithiolate and a chelating phosphine. Inorg Chem 53(17):8919–8929. doi:10.1021/ic5012988

    Article  CAS  Google Scholar 

  58. Lansing JC, Camara JM, Gray DE, Rauchfuss TB (2014) Hydrogen production catalyzed by bidirectional, biomimetic models of the [FeFe]-hydrogenase active site. Organometallics 33(20):5897–5906. doi:10.1021/om5004013

    Article  CAS  Google Scholar 

  59. Liu T, Darensbourg MY (2007) A mixed-valent, Fe(II)Fe(I), diiron complex reproduces the unique rotated state of the [FeFe]-hydrogenase active site. J Am Chem Soc 129(22):7008–7009. doi:10.1021/ja071851a

    Article  CAS  Google Scholar 

  60. Justice AK, Rauchfuss TB, Wilson SR (2007) Unsaturated, mixed-valence diiron dithiolate model for the H-ox state of the [FeFe]-hydrogenase. Angew Chem Int Ed 46(32):6152–6154. doi:10.1002/anie.200702224

    Article  CAS  Google Scholar 

  61. Singleton ML, Bhuvanesh N, Reibenspies JH, Darensbourg MY (2008) Synthetic support of de novo design: sterically bulky [FeFe]-hydrogenase models. Angew Chem Int Ed 47(49):9492–9495. doi:10.1002/anie.200803939

    Article  CAS  Google Scholar 

  62. Munery S, Capon J-F, De Gioia L, Elleouet C, Greco C, Pétillon FY, Schollhammer P, Talarmin J, Zampella G (2013) New Fe(I)-Fe(I) complex featuring a rotated conformation related to the [2Fe](H) subsite of [FeFe]-hydrogenase. Chemistry 19(46):15458–15461. doi:10.1002/chem.201303316

    Article  CAS  Google Scholar 

  63. Olsen MT, Bruschi M, De Gioia L, Rauchfuss TB, Wilson SR (2008) Nitrosyl derivatives of diiron(I) dithiolates mimic the structure and Lewis acidity of the [FeFe]-hydrogenase active site. J Am Chem Soc 130(36):12021–12030. doi:10.1021/ja802268p

    Article  CAS  Google Scholar 

  64. Hsieh C-H, Erdem OF, Harman SD, Singleton ML, Reijerse E, Lubitz W, Popescu CV, Reibenspies JH, Brothers SM, Hall MB, Darensbourg MY (2012) Structural and spectroscopic features of mixed valent Fe(II)Fe(I) complexes and factors related to the rotated configuration of diiron hydrogenase. J Am Chem Soc 134(31):13089–13102. doi:10.1021/ja304866r

    Article  CAS  Google Scholar 

  65. Singleton ML, Reibenspies JH, Darensbourg MY (2010) A cyclodextrin host/guest approach to a hydrogenase active site biomimetic cavity. J Am Chem Soc 132(26):8870–8871. doi:10.1021/ja103774j

    Article  CAS  Google Scholar 

  66. Sano Y, Onoda A, Hayashi T (2011) A hydrogenase model system based on the sequence of cytochrome c: photochemical hydrogen evolution in aqueous media. Chem Commun 47(29):8229–8231. doi:10.1039/c1cc11157d

    Article  CAS  Google Scholar 

  67. Caserta G, Roy S, Atta M, Artero V, Fontecave M (2015) Artificial hydrogenases: biohybrid and supramolecular systems for catalytic hydrogen production or uptake. Curr Opin Chem Biol 25:36–47. doi:10.1016/j.cbpa.2014.12.018

    Article  CAS  Google Scholar 

  68. Jones AK, Lichtenstein BR, Dutta A, Gordon G, Dutton PL (2007) Synthetic hydrogenases: incorporation of an iron carbonyl thiolate into a designed peptide. J Am Chem Soc 129(48):14844–14845. doi:10.1021/ja075116a

    Article  CAS  Google Scholar 

  69. Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J, Atta M, Gambarelli S, Mouesca JM, Reijerse E, Lubitz W, Happe T, Artero V, Fontecave M (2013) Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499(7456):66–69. doi:10.1038/nature12239

    Article  CAS  Google Scholar 

  70. Sellmann D, Kleine-Kleffmann U, Zapf L, Huttner G, Zsolnai L (1984) Übergangsmetall-Komplexe mit Schwefelliganden: VII. Synthese und Struktur der Benzoldithiolato-Eisen-Komplexe [AsPh4]2[Fe(S2C6H4)2] und [Fe(S2C6H4)(PMe3)3]. J Organomet Chem 263(3):321–331. doi:10.1016/0022-328X(84)85035-4

    Article  CAS  Google Scholar 

  71. Rauchfuss TB, Contakes SM, Hsu SCN, Reynolds MA, Wilson SR (2001) The influence of cyanide on the carbonylation of iron(II): synthesis of Fe − SR − CN − CO centers related to the hydrogenase active sites. J Am Chem Soc 123(28):6933–6934. doi:10.1021/ja015948n

    Article  CAS  Google Scholar 

  72. Orthaber A, Karnahl M, Tschierlei S, Streich D, Stein M, Ott S (2014) Coordination and conformational isomers in mononuclear iron complexes with pertinence to the [FeFe]-hydrogenase active site. Dalton Trans 43:4537–4549. doi:10.1039/c3dt53268b

    Article  CAS  Google Scholar 

  73. Beyler M, Ezzaher S, Karnahl M, Santoni M-P, Lomoth R, Ott S (2011) Pentacoordinate iron complexes as functional models of the distal iron in [FeFe]-hydrogenases. Chem Commun 47:11662–11664. doi:10.1039/c1cc14449a

    Article  CAS  Google Scholar 

  74. Gardner JM, Beyler M, Karnahl M, Tschierlei S, Ott S, Hammarström L (2012) Light-driven electron transfer between a photosensitizer and a proton-reducing catalyst Co-adsorbed to NiO. J Am Chem Soc 134(47):19322–19325. doi:10.1021/ja3082268

    Article  CAS  Google Scholar 

  75. Fisher BJ, Eisenberg R (1980) Electrocatalytic reduction of carbon dioxide by using macrocycles of nickel and cobalt. J Am Chem Soc. doi:10.1021/ja00544a035

    Google Scholar 

  76. Creutz C, Sutin N (1985) Photogeneration and reactions of cobalt(I) complexes. Coordin Chem Rev 64:321–341. doi:10.1016/0010-8545(85)80058-8

    Article  CAS  Google Scholar 

  77. Sun Y, Bigi JP, Piro NA, Tang ML, Long JR, Chang CJ (2011) Molecular cobalt pentapyridine catalysts for generating hydrogen from water. J Am Chem Soc 133(24):9212–9215. doi:10.1021/ja202743r

    Article  CAS  Google Scholar 

  78. Rodenberg A, Orazietti M, Probst B, Bachmann C, Alberto R, Baldridge KK, Hamm P (2015) Mechanism of photocatalytic hydrogen generation by a polypyridyl-based cobalt catalyst in aqueous solution. Inorg Chem 54(2):646–657. doi:10.1021/ic502591a

    Article  CAS  Google Scholar 

  79. Khnayzer RS, Thoi VS, Nippe M, King AE, Jurss JW, El Roz KA, Long JR, Chang CJ, Castellano FN (2014) Towards a comprehensive understanding of visible-light photogeneration of hydrogen from water using cobalt(II) polypyridyl catalysts. Energy Environ Sci 7(4):1477–1488. doi:10.1039/C3EE43982H

    Article  CAS  Google Scholar 

  80. Koelle U, Paul S (1986) Electrochemical reduction of protonated cyclopentadienylcobalt phosphine complexes. Inorg Chem 25(16):2689–2694. doi:10.1021/ic00236a007

    Article  CAS  Google Scholar 

  81. Fang M, Wiedner ES, Dougherty WG, Kassel WS, Liu T, DuBois DL, Bullock RM (2014) Cobalt complexes containing pendant amines in the second coordination sphere as electrocatalysts for H2 production. Organometallics 33(20):5820–5833. doi:10.1021/om5004607

    Article  CAS  Google Scholar 

  82. Jacobsen GM, Yang JY, Twamley B, Wilson AD, Bullock RM, DuBois MR, DuBois DL (2008) Hydrogen production using cobalt-based molecular catalysts containing a proton relay in the second coordination sphere. Energy Environ Sci 1(1):167–174. doi:10.1039/B805309J

    Article  CAS  Google Scholar 

  83. Wiedner ES, Yang JY, Dougherty WG, Kassel WS, Bullock RM, DuBois MR, DuBois DL (2010) Comparison of cobalt and nickel complexes with sterically demanding cyclic diphosphine ligands: electrocatalytic H2 production by [Co(PtBu2NPh2)(CH3CN)3](BF4)2. Organometallics 29(21):5390–5401. doi:10.1021/om100395r

    Article  CAS  Google Scholar 

  84. Wiedner ES, Roberts JAS, Dougherty WG (2013) Synthesis and electrochemical studies of cobalt(III) monohydride complexes containing pendant amines. Inorg Chem 52(17):9975–9988. doi:10.1021/ic401232g

    Article  CAS  Google Scholar 

  85. Lee CH, Dogutan DK, Nocera DG (2011) Hydrogen generation by hangman metalloporphyrins. J Am Chem Soc 133(23):8775–8777. doi:10.1021/ja202136y

    Article  CAS  Google Scholar 

  86. Roubelakis MM, Bediako DK, Dogutan DK, Nocera DG (2012) Proton-coupled electron transfer kinetics for the hydrogen evolution reaction of hangman porphyrins. Energy Environ Sci 5(7):7737–7740. doi:10.1039/c2ee21123h

    Article  CAS  Google Scholar 

  87. Kleingardner JG, Kandemir B, Bren KL (2014) Hydrogen evolution from neutral water under aerobic conditions catalyzed by cobalt microperoxidase-11. J Am Chem Soc 136(1):4–7. doi:10.1021/ja406818h

    Article  CAS  Google Scholar 

  88. Connolly P, Espenson JH (1986) Cobalt-catalyzed evolution of molecular hydrogen. Inorg Chem 25(16):2684–2688. doi:10.1021/ic00236a006

    Article  CAS  Google Scholar 

  89. Artero V, Chavarot-Kerlidou M, Fontecave M (2011) Splitting water with cobalt. Angew Chem Int Ed 50(32):7238–7266. doi:10.1002/anie.201007987

    Article  CAS  Google Scholar 

  90. Razavet M, Artero V, Fontecave M (2005) Proton electroreduction catalyzed by cobaloximes: functional models for hydrogenases. Inorg Chem 44(13):4786–4795. doi:10.1021/ic050167z

    Article  CAS  Google Scholar 

  91. Baffert C, Artero V, Fontecave M (2007) Cobaloximes as functional models for hydrogenases. 2. Proton electroreduction catalyzed by difluoroborylbis(dimethylglyoximato)cobalt(II) complexes in organic media. Inorg Chem 46(5):1817–1824. doi:10.1021/ic061625m

    Article  CAS  Google Scholar 

  92. Hu X, Brunschwig BS, Peters JC (2007) Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes. J Am Chem Soc 129(29):8988–8998. doi:10.1021/ja067876b

    Article  CAS  Google Scholar 

  93. Jacques PA, Artero V, Pecaut J, Fontecave M (2009) Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages. Proc Natl Acad Sci U S A 106(49):20627–20632. doi:10.1073/pnas.0907775106

    Article  CAS  Google Scholar 

  94. Hu X, Cossairt BM, Brunschwig BS, Lewis NS, Peters JC (2005) Electrocatalytic hydrogen evolution by cobalt difluoroboryl-diglyoximate complexes. Chem Commun 37:4723–4725. doi:10.1039/b509188h

    Article  CAS  Google Scholar 

  95. Bacchi M, Berggren G, Niklas J, Veinberg E, Mara MW, Shelby ML, Poluektov OG, Chen LX, Tiede DM, Cavazza C, Field MJ, Fontecave M, Artero V (2014) Cobaloxime-based artificial hydrogenases. Inorg Chem 53(15):8071–8082. doi:10.1021/ic501014c

    Article  CAS  Google Scholar 

  96. Fang M, Engelhard MH, Zhu Z, Helm ML, Roberts JAS (2014) Eelectrodeposition from acidic solutions of nickel Bis(benzenedithiolate) produces a hydrogen-evolving Ni-S film on glassy carbon. ACS Catal 4:90–98. doi:10.1021/cs400675u

    Article  CAS  Google Scholar 

  97. Wang D, Ghirlanda G, Allen JP (2014) Water oxidation by a nickel-glycine catalyst. J Am Chem Soc 136(29):10198–10201. doi:10.1021/ja504282w

    Article  CAS  Google Scholar 

  98. Cobo S, Heidkamp J, Jacques P-A, Fize J, Fourmond V, Guetaz L, Jousselme B, Ivanova V, Dau H, Palacin S, Fontecave M, Artero V (2012) A Janus cobalt-based catalytic material for electro-splitting of water. Nat Mater 11(9):802–807. doi:10.1038/nmat3385

    Article  CAS  Google Scholar 

  99. Chen L, Chen G, Leung C-F, Yiu S-M, Ko C-C, Anxolabéhère-Mallart E, Robert M, Lau T-C (2015) Dual homogeneous and heterogeneous pathways in photo- and electrocatalytic hydrogen evolution with nickel(II) catalysts bearing tetradentate macrocyclic ligands. ACS Catal 5(1):356–364. doi:10.1021/cs501534h

    Article  CAS  Google Scholar 

  100. Cherdo S, El Ghachtouli S, Sircoglou M, Brisset F, Orio M, Aukauloo A (2014) A nickel dimethyl glyoximato complex to form nickel based nanoparticles for electrocatalytic H2 production. Chem Commun 50(88):13514–13516. doi:10.1039/C4CC05355A

    Article  CAS  Google Scholar 

  101. Shaw WJ, Helm ML, DuBois DL (2013) A modular, energy-based approach to the development of nickel containing molecular electrocatalysts for hydrogen production and oxidation. Bioenergetics 1827(8–9):1123–1139. doi:10.1016/j.bbabio.2013.01.003

    Article  CAS  Google Scholar 

  102. Kilgore UJ, Roberts JAS, Pool DH, Appel AM, Stewart MP, DuBois MR, Dougherty WG, Kassel WS, Bullock RM, DuBois DL (2011) [Ni(PPh2NC6H4X2)2]2+ complexes as electrocatalysts for H2 production: effect of substituents, acids, and water on catalytic rates. J Am Chem Soc 133(15):5861–5872. doi:10.1021/ja109755f

    Article  CAS  Google Scholar 

  103. Kilgore UJ, Stewart MP, Helm ML, Dougherty WG, Kassel WS, DuBois MR, DuBois DL, Bullock RM (2011) Studies of a series of [Ni(Pr2NPh2)2(CH3CN)]2+ complexes as electrocatalysts for H2 production: substituent variation at the phosphorous atom of the P2N2 ligand. Inorg Chem 50(21):10908–10918. doi:10.1021/ic201461a

    Article  CAS  Google Scholar 

  104. DuBois DL, Bullock RM (2011) Molecular electrocatalysts for the oxidation of hydrogen and the production of hydrogen - the role of pendant amines as proton relays. Eur J Inorg Chem 2011(7):1017–1027. doi:10.1002/ejic.201001081

    Article  CAS  Google Scholar 

  105. O’Hagan M, Shaw WJ, Raugei S, Chen S (2011) Moving protons with pendant amines: proton mobility in a nickel catalyst for oxidation of hydrogen. J Am Chem Soc 133(36):14301–14312. doi:10.1021/ja201838x

    Article  CAS  Google Scholar 

  106. Helm ML, Stewart MP, Bullock RM, DuBois MR, DuBois DL (2011) A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 333(6044):863–866. doi:10.1126/science.1205864

    Article  CAS  Google Scholar 

  107. Pool DH, Stewart MP, O’Hagan M, Shaw WJ, Roberts JAS, Bullock RM, DuBois DL (2012) Acidic ionic liquid/water solution as both medium and proton source for electrocatalytic H2 evolution by [Ni(P2N2)2]2+ complexes. Proc Natl Acad Sci U S A 109(39):15634–15639. doi:10.1073/pnas.1120208109

    Article  CAS  Google Scholar 

  108. Hoffert WA, Roberts JAS, Bullock RM, Helm ML (2013) Production of H2 at fast rates using a nickel electrocatalyst in water–acetonitrile solutions. Chem Commun 49(71):7767–7769. doi:10.1039/C3CC43203C

    Article  CAS  Google Scholar 

  109. Das AK, Engelhard MH, Bullock RM (2014) A hydrogen-evolving Ni(P2N2)2 electrocatalyst covalently attached to a glassy carbon electrode: preparation, characterization, and catalysis. Comparisons with the homogeneous analogue. Inorg Chem 53(13):6875–6885. doi:10.1021/ic500701a

    Article  CAS  Google Scholar 

  110. Tran PD, Le Goff A, Heidkamp J, Jousselme B, Guillet N, Palacin S, Dau H, Fontecave M, Artero V (2011) Noncovalent modification of carbon nanotubes with pyrene-functionalized nickel complexes: carbon monoxide tolerant catalysts for hydrogen evolution and uptake. Angew Chem Int Ed 50(6):1371–1374. doi:10.1002/anie.201005427

    Article  CAS  Google Scholar 

  111. Le Goff A, Artero V, Jousselme B, Tran PD, Guillet N, Metaye R, Fihri A, Palacin S, Fontecave M (2009) From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 326(5958):1384–1387. doi:10.1126/science.1179773

    Article  CAS  Google Scholar 

  112. Dutta A, Lense S, Hou J, Engelhard MH, Roberts JAS, Shaw WJ (2013) Minimal proton channel enables H2 oxidation and production with a water-soluble nickel-based catalyst. J Am Chem Soc 135(49):18490–18496. doi:10.1021/ja407826d

    Article  CAS  Google Scholar 

  113. Ginovska-Pangovska B, Dutta A, Reback ML, Linehan JC, Shaw WJ (2014) Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation. Acc Chem Res 47(8):2621–2630. doi:10.1021/ar5001742

    Article  CAS  Google Scholar 

  114. Dutta A, Roberts JAS, Shaw WJ (2014) Arginine-containing ligands enhance H2 oxidation catalyst performance. Angew Chem Int Ed Engl 53(25):6487–6491. doi:10.1002/anie.201402304

    Article  CAS  Google Scholar 

  115. Dutta A, DuBois DL, Roberts JAS, Shaw WJ (2014) Amino acid modified Ni catalyst exhibits reversible H2 oxidation/production over a broad pH range at elevated temperatures. Proc Natl Acad Sci U S A 111(46):16286–16291. doi:10.1073/pnas.1416381111

    Article  CAS  Google Scholar 

  116. Yang Y, Wang M, Xue L, Zhang F, Chen L, Ahlquist MSG, Sun L (2014) Nickel complex with internal bases as efficient molecular catalyst for photochemical H2 production. ChemSusChem 7(10):2889–2897. doi:10.1002/cssc.201402381

    Article  CAS  Google Scholar 

  117. Gan L, Groy TL, Tarakeshwar P, Mazinani SKS, Shearer J, Mujica V, Jones AK (2015) A nickel phosphine complex as a fast and efficient hydrogen production catalyst. J Am Chem Soc 137(3):1109–1115. doi:10.1021/ja509779q

    Article  CAS  Google Scholar 

  118. Happe RP, Roseboom W, Pierik AJ, Albracht SP, Bagley KA (1997) Biological activation of hydrogen. Nature 385(6612):126. doi:10.1038/385126a0

    Article  CAS  Google Scholar 

  119. Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18:506–511. doi:10.1016/S0167-7799(00)01511-0

    Article  CAS  Google Scholar 

  120. Rumpel S, Siebel JF, Fares C, Duan J, Reijerse E, Happe T, Lubitz W, Winkler M (2014) Enhancing hydrogen production of microalgae by redirecting electrons from photosystem I to hydrogenase. Energy Environ Sci 7(10):3296–3301. doi:10.1039/C4EE01444H

    Article  CAS  Google Scholar 

  121. Winkler M, Kuhlgert S, Hippler M, Happe T (2009) Characterization of the key step for light-driven hydrogen evolution in green algae. J Biol Chem 284(52):36620–36627. doi:10.1074/jbc.M109.053496

    Article  CAS  Google Scholar 

  122. Leino H, Shunmugam S, Isojärvi J, Oliveira P, Mulo P, Saari L, Battchikova N, Sivonen K, Lindblad P, Aro E-M, Allahverdiyeva Y (2014) Characterization of ten H2 producing cyanobacteria isolated from the Baltic Sea and Finnish lakes. Int J Hydr Energy 39(17):8983–8991. doi:10.1016/j.ijhydene.2014.03.171

    Article  CAS  Google Scholar 

  123. Lubner CE, Applegate AM, Knörzer P, Ganago A, Bryant DA, Happe T, Golbeck JH (2011) Solar hydrogen-producing bionanodevice outperforms natural photosynthesis. Proc Natl Acad Sci U S A 108(52):20988–20991. doi:10.1073/pnas.1114660108

    Article  CAS  Google Scholar 

  124. Sherman B, Vaughn M, Bergkamp J, Gust D, Moore A, Moore T (2014) Evolution of reaction center mimics to systems capable of generating solar fuel. Photosynth Res 120(1–2):59–70. doi:10.1007/s11120-013-9795-4

    Article  CAS  Google Scholar 

  125. Megiatto JD, Antoniuk-Pablant A, Sherman BD, Kodis G, Gervaldo M, Moore TA, Moore AL, Gust D (2012) Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation. Proc Natl Acad Sci U S A 109(39):15578–15583. doi:10.1073/pnas.1118348109

    Article  CAS  Google Scholar 

  126. Gust D, Moore TA, Moore AL (2009) Solar fuels via artificial photosynthesis. Acc Chem Res 42(12):1890–1898. doi:10.1021/ar900209b

    Article  CAS  Google Scholar 

  127. Gust D, Moore TA, Moore AL (2012) Realizing artificial photosynthesis. Faraday Discuss 155:9. doi:10.1039/c1fd00110h

    Article  CAS  Google Scholar 

  128. Wang M, Chen L, Li X, Sun L (2011) Approaches to efficient molecular catalyst systems for photochemical H2 production using [FeFe]-hydrogenase active site mimics. Dalton Trans 40(48):12793–12800. doi:10.1039/C1DT11166C

    Article  CAS  Google Scholar 

  129. Na Y, Pan J, Wang M, Sun L (2007) Intermolecular electron transfer from photogenerated [Ru(bpy)3]3+ to [2Fe2S] model complexes of the iron-only hydrogenase active site. Inorg Chem 46(10):3813–3815. doi:10.1021/ic070234k

    Article  CAS  Google Scholar 

  130. Na Y, Wang M, Pan J, Zhang P, Åkermark B, Sun L (2008) Visible light-driven electron transfer and hydrogen generation catalyzed by bioinspired [2Fe2S] complexes. Inorg Chem 47(7):2805–2810. doi:10.1021/ic702010w

    Article  CAS  Google Scholar 

  131. Streich D, Astuti Y, Orlandi M, Schwartz L, Lomoth R, Hammarström L, Ott S (2010) High-turnover photochemical hydrogen production catalyzed by a model complex of the [FeFe]-hydrogenase active site. Chem Eur J 16(1):60–63. doi:10.1002/chem.200902489

    Article  CAS  Google Scholar 

  132. Nann T, Ibrahim SK, Woi P-M, Xu S, Ziegler J, Pickett CJ (2010) Water splitting by visible light: a nanophotocathode for hydrogen production. Angew Chem Int Ed 49(9):1574–1577. doi:10.1002/anie.200906262

    Article  CAS  Google Scholar 

  133. Li C-B, Li Z-J, Yu S, Wang G-X, Wang F, Meng Q-Y, Bin C, Feng K, Tung C-H, Wu L-Z (2013) Interface-directed assembly of a simple precursor of [FeFe]–H2ase mimics on CdSe QDs for photosynthetic hydrogen evolution in water. Energy Environ Sci 6(9):2597–2602. doi:10.1039/C3EE40992A

    Article  CAS  Google Scholar 

  134. Wen F, Li C (2013) Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts. Acc Chem Res 46(11):2355–2364. doi:10.1021/ar300224u

    Article  CAS  Google Scholar 

  135. Yu T, Zeng Y, Chen J, Li Y-Y, Yang G, Li Y (2013) Exceptional dendrimer-based mimics of diiron hydrogenase for the photochemical production of hydrogen. Angew Chem Int Ed 52(21):5631–5635. doi:10.1002/anie.201301289

    Article  CAS  Google Scholar 

  136. Roy S, Shinde S, Hamilton GA, Hartnett HE, Jones AK (2011) Artificial [FeFe]-hydrogenase: on resin modification of an amino acid to anchor a hexacarbonyldiiron cluster in a peptide framework. Eur J Inorg Chem 7:1050–1055. doi:10.1002/ejic.201000979

    Article  CAS  Google Scholar 

  137. Sano Y, Onoda A, Hayashi T (2012) Photocatalytic hydrogen evolution by a diiron hydrogenase model based on a peptide fragment of cytochrome c 556 with an attached diiron carbonyl cluster and an attached ruthenium photosensitizer. J Inorg Biochem 108:159–162. doi:10.1016/j.jinorgbio.2011.07.010

    Article  CAS  Google Scholar 

  138. Onoda A, Kihara Y, Fukumoto K, Sano Y, Hayashi T (2014) Photoinduced hydrogen evolution catalyzed by a synthetic diiron dithiolate complex embedded within a protein matrix. ACS Catal 4(8):2645–2648. doi:10.1021/cs500392e

  139. Jian J-X, Liu Q, Li Z-J, Wang F, Li X-B, Li C-B, Liu B, Meng Q-Y, Chen B, Feng K, Tung C-H, Wu L-Z (2013) Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase. Nat Commun 4:2695. doi:10.1038/ncomms3695

    Article  CAS  Google Scholar 

  140. Reisner E, Powell DJ, Cavazza C, Fontecilla-Camps JC, Armstrong FA (2009) Visible light-driven H2 production by hydrogenases attached to dye-sensitized TiO2 nanoparticles. J Am Chem Soc 131(51):18457–18466. doi:10.1021/ja907923r

    Article  CAS  Google Scholar 

  141. King PW (2013) Designing interfaces of hydrogenase–nanomaterial hybrids for efficient solar conversion. Bioenergetics 1827(8–9):949–957. doi:10.1016/j.bbabio.2013.03.006

    Article  CAS  Google Scholar 

  142. Kleingardner JG, Kandemir B, Bren KL (2013) Hydrogen evolution from neutral water under aerobic conditions catalyzed by cobalt microperoxidase-11. J Am Chem Soc 136(1):4–7. doi:10.1021/ja406818h

    Article  CAS  Google Scholar 

  143. Sommer DJ, Vaughn MD, Ghirlanda G (2014) Protein secondary-shell interactions enhance the photoinduced hydrogen production of cobalt protoporphyrin-IX. Chem Commun 50(100):15852–15855. doi:10.1039/C4CC06700B

    Article  CAS  Google Scholar 

  144. Wang W, Rauchfuss TB, Bertini L, Zampella G (2012) Unsensitized photochemical hydrogen production catalyzed by diiron hydrides. J Am Chem Soc 134(10):4525–4528. doi:10.1021/ja211778j

    Article  CAS  Google Scholar 

  145. Bertini L, Fantucci P, De Gioia L, Zampella G (2013) Excited state properties of diiron dithiolate hydrides: implications in the unsensitized photocatalysis of H2 evolution. Inorg Chem 52(17):9826–9841. doi:10.1021/ic400818t

    Article  CAS  Google Scholar 

  146. Frederix PWJM, Adamczyk K, Wright JA, Tuttle T, Ulijn RV, Pickett CJ, Hunt NT (2014) Investigation of the ultrafast dynamics occurring during unsensitized photocatalytic H2 evolution by an [FeFe]-hydrogenase subsite analogue. Organometallics 33(20):5888–5896. doi:10.1021/om500521w

    Article  CAS  Google Scholar 

  147. Majumdar A (2014) Bioinorganic modeling chemistry of carbon monoxide dehydrogenases: description of model complexes, current status and possible future scopes. Dalton Trans 43(32):12135–12145. doi:10.1039/c4dt00729h

    Article  CAS  Google Scholar 

  148. Gourlay C, Nielsen DJ, White JM, Knottenbelt SZ, Kirk ML, Young CG (2006) Paramagnetic active site models for the molybdenum − copper carbon monoxide dehydrogenase. J Am Chem Soc 128(7):2164–2165. doi:10.1021/ja056500f

    Article  CAS  Google Scholar 

  149. Takuma M, Ohki Y, Tatsumi K (2005) Sulfido-bridged dinuclear molybdenum − copper complexes related to the active site of CO dehydrogenase: [(dithiolate)Mo(O)S2Cu(SAr)]2− (dithiolate=1,2-S2C6H4, 1,2-S2C6H2-3,6-Cl2, 1,2-S2C2H4). Inorg Chem 44(17):6034–6043. doi:10.1021/ic050294v

    Article  CAS  Google Scholar 

  150. Groysman S, Majumdar A, Zheng S-L, Holm RH (2009) Reactions of monodithiolene tungsten(VI) sulfido complexes with copper(I) in relation to the structure of the active site of carbon monoxide dehydrogenase. Inorg Chem 49(3):1082–1089. doi:10.1021/ic902066m

    Article  CAS  Google Scholar 

  151. Ciurli S, Ross PK, Scott MJ, Yu SB, Holm RH (1992) Synthetic nickel-containing heterometal cubane-type clusters with NiFe3Q4 cores (Q=sulfur, selenium). J Am Chem Soc 114(13):5415–5423. doi:10.1021/ja00039a063

    Article  CAS  Google Scholar 

  152. Zhou J, Raebiger JW, Crawford CA, Holm RH (1997) Metal ion incorporation reactions of the cluster [Fe3S4(LS3)]3−, containing the cuboidal [Fe3S4]0 core. J Am Chem Soc 119(27):6242–6250. doi:10.1021/ja9704186

    Article  CAS  Google Scholar 

  153. Panda R, Zhang Y, McLauchlan CC, Venkateswara Rao P, Tiago de Oliveira FA, Münck E, Holm RH (2004) Initial structure modification of tetrahedral to planar nickel(II) in a nickel − iron − sulfur cluster related to the C-cluster of carbon monoxide dehydrogenase. J Am Chem Soc 126(20):6448–6459. doi:10.1021/ja030627s

    Article  CAS  Google Scholar 

  154. Panda R, Berlinguette CP, Zhang Y, Holm RH (2005) Synthesis of [MFe3S4] clusters containing a planar MII site (M=Ni, Pd, Pt), a structural element in the C-cluster of carbon monoxide dehydrogenase. J Am Chem Soc 127(31):11092–11101. doi:10.1021/ja052381s

    Article  CAS  Google Scholar 

  155. Sun J, Tessier C, Holm RH (2007) Sulfur ligand substitution at the nickel(II) sites of cubane-type and cubanoid [NiFe3S4] clusters relevant to the C-clusters of carbon monoxide dehydrogenase. Inorg Chem 46(7):2691–2699. doi:10.1021/ic062362z

    Article  CAS  Google Scholar 

  156. Slater S, Wagenknecht JH (1984) Electrochemical reduction of carbon dioxide catalyzed by Rh(diphos)2Cl. J Am Chem Soc 106(18):5367–5368. doi:10.1021/ja00330a064

    Article  CAS  Google Scholar 

  157. Darensbourg DJ, Darensbourg MY, Goh LY, Ludvig M, Wiegreffe P (1987) Reaction of (Cy3P)2Ni(H)(CH3) with carbon dioxide. Formation of an hydridonickel formate complex, HNi(O2CH)(Cy3P)2. J Am Chem Soc 109(24):7539–7540. doi:10.1021/ja00258a053

    Article  CAS  Google Scholar 

  158. DuBois DL, Miedaner A (1987) Mediated electrochemical reduction of CO2. Preparation and comparison of an isoelectronic series of complexes. J Am Chem Soc 109(1):113–117. doi:10.1021/ja00235a019

    Article  CAS  Google Scholar 

  159. DuBois DL, Miedaner A, Haltiwanger RC (1991) Electrochemical reduction of carbon dioxide catalyzed by [Pd(triphosphine)(solvent)](BF4)2 complexes: synthetic and mechanistic studies. J Am Chem Soc 113(23):8753–8764. doi:10.1021/ja00023a023

    Article  CAS  Google Scholar 

  160. Steffey BD, Curtis CJ, DuBois DL (1995) Electrochemical reduction of CO2 catalyzed by a dinuclear palladium complex containing a bridging hexaphosphine ligand: evidence for cooperativity. Organometallics 14(10):4937–4943. doi:10.1021/om00010a066

    Article  CAS  Google Scholar 

  161. Hawecker J, Lehn J-M, Ziessel R (1983) Efficient photochemical reduction of CO2 to CO by visible light irradiation of systems containing Re(bipy)(CO)3X or Ru(bipy)3 2+-Co2+ combinations as homogeneous catalysts. Chem Commun 9:536–538. doi:10.1039/c39830000536

    Article  Google Scholar 

  162. Hawecker J, Lehn J-M, Ziessel R (1984) Electrocatalytic reduction of carbon dioxide mediated by Re(bipy)(CO)3Cl (bipy=2,2′-bipyridine). Chem Commun 6:328–330. doi:10.1039/c39840000328

    Article  Google Scholar 

  163. Hawecker J, Lehn J-M, Ziessel R (1986) Photochemical and electrochemical reduction of carbon dioxide to carbon monoxide mediated by (2,2′-bipyridine)tricarbonylchlororhenium(I) and related complexes as homogeneous catalysts. Helv Chim Acta 69(8):1990–2012. doi:10.1002/hlca.19860690824

    Article  CAS  Google Scholar 

  164. O’Toole TR, Margerum LD, Westmoreland TD, Vining WJ, Murray RW, Meyer TJ (1985) Electrocatalytic reduction of CO2 at a chemically modified electrode. Chem Commun 20:1416–1417. doi:10.1039/c39850001416

    Article  Google Scholar 

  165. Cabrera CR, Abruña HD (1986) Electrocatalysis of CO2 reduction at surface modified metallic and semiconducting electrodes. J Electroanal Chem Interfacial Electrochem 209(1):101–107. doi:10.1016/0022-0728(86)80189-9

    Article  CAS  Google Scholar 

  166. Cosnier S, Deronzier A, Moutet J-C (1986) Electrochemical coating of a platinum electrode by a poly(pyrrole) film containing the Fac-Re(2,2′-bipyridine)(CO)3Cl system application to electrocatalytic reduction of CO2. J Electroanal Chem Interfacial Electrochem 207(1–2):315–321. doi:10.1016/0022-0728(86)87080-2

    Article  CAS  Google Scholar 

  167. Cosnier S, Deronzier A, Moutet J-C (1988) Electrocatalytic reduction of CO2 on electrodes modified by Fac-Re(2,2′-bipyridine)(CO)3Cl complexes bonded to polypyrrole films. J Mol Catal 45(3):381–391. doi:10.1016/0304-5102(88)80070-1

    Article  CAS  Google Scholar 

  168. Yaroshevsky AA (2006) Abundances of chemical elements in the Earth’s crust. Geochem Int 44(1):48–55. doi:10.1134/s001670290601006x

    Article  Google Scholar 

  169. Brimm EO, Lynch MA, Sesny WJ (1954) Preparation and properties of manganese carbonyl. J Am Chem Soc 76(14):3831–3835. doi:10.1021/ja01643a071

    Article  CAS  Google Scholar 

  170. Abel EW, Wilkinson G (1959) Carbonyl halides of manganese and some related compounds. J Chem Soc 1501–1505. doi:10.1039/jr9590001501

  171. Johnson FPA, George MW, Hartl F, Turner JJ (1996) Electrocatalytic reduction of CO2 using the complexes [Re(bpy)(CO)3L]n (n = +1, L = P(OEt)3, CH3CN; n = 0, L = Cl−, Otf−; bpy = 2,2′-bipyridine; Otf − = CF3SO3) as catalyst precursors: infrared spectroelectrochemical investigation. Organometallics 15(15):3374–3387. doi:10.1021/om960044+

    Article  CAS  Google Scholar 

  172. Hartl F, Rossenaar BD, Stor GJ, Stufkens DJ (1995) Role of an electron-transfer chain reaction in the unusual photochemical formation of five-coordinated anions [Mn(CO)3(α-diimine)]- from Fac-[Mn(X)(CO)3(α-diimine)] (X=halide) at Low temperatures. Recl Trav Chim Pays Bas 114(11–12):565–570. doi:10.1002/recl.19951141123

    CAS  Google Scholar 

  173. Hartl F, Rosa P, Ricard L, Le Floch P, Záliš S (2007) Electronic transitions and bonding properties in a series of five-coordinate “16-electron” complexes [Mn(CO)3(L2)] (L2=chelating redox-active π-donor ligand). Coord Chem Rev 251(3–4):557–576. doi:10.1016/j.ccr.2006.09.003

    Article  CAS  Google Scholar 

  174. Bourrez M, Molton F, Chardon-Noblat S, Deronzier A (2011) [Mn(bipyridyl)(CO)3Br]: an abundant metal carbonyl complex as efficient electrocatalyst for CO2 reduction. Angew Chem Int Ed 50(42):9903–9906. doi:10.1002/anie.201103616

    Article  CAS  Google Scholar 

  175. Smieja JM, Sampson MD, Grice KA, Benson EE, Froehlich JD, Kubiak CP (2013) Manganese as a substitute for rhenium in CO2 reduction catalysts: the importance of acids. Inorg Chem 52(5):2484–2491. doi:10.1021/ic302391u

    Article  CAS  Google Scholar 

  176. Zeng Q, Tory J, Hartl F (2014) Electrocatalytic reduction of carbon dioxide with a manganese(I) tricarbonyl complex containing a nonaromatic α-diimine ligand. Organometallics 33(18):5002–5008. doi:10.1021/om500389y

    Article  CAS  Google Scholar 

  177. Fujita E, Creutz C, Sutin N, Szalda DJ (1991) Carbon dioxide activation by cobalt(I) macrocycles: factors affecting carbon dioxide and carbon monoxide binding. J Am Chem Soc 113(1):343–353. doi:10.1021/ja00001a048

    Article  CAS  Google Scholar 

  178. Fujita E, Creutz C, Sutin N, Brunschwig BS (1993) Carbon dioxide activation by cobalt macrocycles: evidence of hydrogen bonding between bound CO2 and the macrocycle in solution. Inorg Chem 32(12):2657–2662. doi:10.1021/ic00064a015

    Article  CAS  Google Scholar 

  179. Fujita E, Furenlid LR, Renner MW (1997) Direct XANES evidence for charge transfer in Co − CO2 complexes. J Am Chem Soc 119(19):4549–4550. doi:10.1021/ja970151a

    Article  CAS  Google Scholar 

  180. Bhugun I, Lexa D, Savéant J-M (1994) Ultraefficient selective homogeneous catalysis of the electrochemical reduction of carbon dioxide by an iron(0) porphyrin associated with a weak broensted acid cocatalyst. J Am Chem Soc 116(11):5015–5016. doi:10.1021/ja00090a068

    Article  CAS  Google Scholar 

  181. Bhugun I, Lexa D, Savéant J-M (1996) Catalysis of the electrochemical reduction of carbon dioxide by iron(0) porphyrins: synergystic effect of weak brönsted acids. J Am Chem Soc 118(7):1769–1776. doi:10.1021/ja9534462

    Article  CAS  Google Scholar 

  182. Bhugun I, Lexa D, Savéant J-M (1996) Catalysis of the electrochemical reduction of carbon dioxide by iron(0) porphyrins. Synergistic effect of Lewis acid cations. J Phys Chem 100(51):19981–19985. doi:10.1021/jp9618486

    Article  CAS  Google Scholar 

  183. Costentin C, Drouet S, Robert M, Savéant J-M (2012) A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science 338(6103):90–94. doi:10.1126/science.1224581

    Article  CAS  Google Scholar 

  184. Costentin C, Passard G, Robert M, Savéant J-M (2014) Pendant acid–base groups in molecular catalysts: H-bond promoters or proton relays? mechanisms of the conversion of CO2 to CO by electrogenerated iron(0)porphyrins bearing prepositioned phenol functionalities. J Am Chem Soc 136(33):11821–11829. doi:10.1021/ja506193v

    Article  CAS  Google Scholar 

  185. Costentin C, Passard G, Robert M, Savéant J-M (2014) Ultraefficient homogeneous catalyst for the CO2-to-CO electrochemical conversion. Proc Natl Acad Sci U S A 111(42):14990–14994. doi:10.1073/pnas.1416697111

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported as part of the Biological Electron Transfer and Catalysis Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0012518. Research on hydrogen production catalysis was funded by the Department of Energy, Office of Basic Energy Sciences under contract #DE-FG02-12ER16303. JL is supported by an IGERT-SUN fellowship funded by the National Science Foundation (Award 1144616). AKJ thanks the Institut D’Etudes Avancées Exploratoire Méditerranéen de l’Interdisciplinarité for sabbatical support in research on carbon dioxide reduction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Katherine Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gan, L., Jennings, D., Laureanti, J., Jones, A.K. (2015). Biomimetic Complexes for Production of Dihydrogen and Reduction of CO2 . In: Kalck, P. (eds) Homo- and Heterobimetallic Complexes in Catalysis. Topics in Organometallic Chemistry, vol 59. Springer, Cham. https://doi.org/10.1007/3418_2015_146

Download citation

Publish with us

Policies and ethics