Skip to main content

Computational Insights into Palladium-Mediated Allylic Substitution Reactions

  • Chapter
  • First Online:
Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 38))

Abstract

Allyl palladium complexes have a rich chemistry. Many aspects of their structure and reactivity have been studied computationally. This chapter gives an overview of the history in this field, from structural studies and the effect of ligands and substituents, to the rich reactivity of the title complexes. The latter includes complex formation, reactions with nucleophiles and electrophiles, and dynamic equilibria. An important focus area has been the TsujiIt1;ndash;Trost reaction, in particular asymmetric versions thereof. A brief overview of computational methods, aimed at modeling novices, can be found in the introduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This point can be discussed, the methods certainly are not equal. In some cases, MP2 will give better energies, in some cases a hybrid method such as B3LYP is more accurate, and simpler pure DFT methods such as BP86 generally give good geometries. All the methods can give large and very different errors in pathological cases. However, it is probably safe to say that if three different methods such as MP2, a GGA functional such as BP86, and a hybrid method such as B3LYP all agree, the result will be reliable.

  2. 2.

    B3LYP/LACVP* using PH3 as a ligand model, gas phase calculations on the system depicted in SchemeIt1;nbsp;7.

References

  1. Hartwig J (2010) Organotransition metal chemistry. University Science Books, Sausalito, CA

    Google Scholar 

  2. Trost BM, Crawley ML (2003) Asymmetric transition-metal-catalyzed allylic alkylations: applications in total synthesis. Chem Rev 103:2921

    Article  CAS  Google Scholar 

  3. Dedieu A (2000) Theoretical studies in palladium and platinum molecular chemistry. Chem Rev 100:543

    Article  CAS  Google Scholar 

  4. Cramer CJ (2004) Essentials of computational chemistry: theories and models, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  5. Jensen F (2006) Introduction to computational chemistry, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  6. Becke AD (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  7. Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37:785

    Article  CAS  Google Scholar 

  8. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab-initio calculation of vibrational absorption and circular-dichroism spectra using density-functional force-fields. J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  9. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463

    Article  CAS  Google Scholar 

  10. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  11. Averkiev BB, Zhao Y, Truhlar DG (2010) Binding energy of d(10) transition metals to alkenes by wave function theory and density functional theory. J Mol Catal A-Chem 324:80

    Article  CAS  Google Scholar 

  12. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  13. Nilsson Lill SO (2009) Application of dispersion-corrected density functional theory. J Phys Chem A 113:10321

    Article  CAS  Google Scholar 

  14. Miertus S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum It1;ndash; a direct utilization of abinitio molecular potentials for the prevision of solvent effects. Chem Phys 55:117

    Article  CAS  Google Scholar 

  15. Cammi R, Tomasi J (1995) Remarks on the use of the apparent surface-charges (ASC) methods in solvation problems It1;ndash; iterative versus matrix-inversion procedures and the renormalization of the apparent charges. J Comput Chem 16:1449

    Article  CAS  Google Scholar 

  16. Hagelin H, Akermark B, Norrby PO (1999) A solvated transition state for the nucleophilic attack on cationic It1;eta;3-allylpalladium complexes. Chem-Eur J 5:902

    Article  CAS  Google Scholar 

  17. Comba PH, Hambley TW (2009) Molecular modeling of inorganic compounds, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  18. Norrby PO, Akermark B, Haeffner F, Hansson S, Blomberg M (1993) Molecular mechanics (MM2) parameters for the (It1;eta;3-Allyl)palladium moiety. J Am Chem Soc 115:4859

    Article  CAS  Google Scholar 

  19. Akermark B, Oslob JD, Norrby PO (1995) Conformations of (It1;eta;3-Cyclohexenyl)palladium systems It1;ndash; a molecular mechanics (MM2) study. Organometallics 14:1688

    Article  Google Scholar 

  20. Hagelin H, Svensson M, Akermark B, Norrby PO (1999) Molecular mechanics (MM3*) force field parameters for calculations on palladium olefin complexes with phosphorus ligands. Organometallics 18:4574

    Article  CAS  Google Scholar 

  21. Hagelin H, Akermark B, Norrby PO (1999) New molecular mechanics (MM3*) force field parameters for calculations on (It1;eta;3-allyl)palladium complexes with nitrogen and phosphorus ligands. Organometallics 18:2884

    Article  CAS  Google Scholar 

  22. Pregosin PS, Ruegger H, Salzmann R, Albinati A, Lianza F, Kunz RW (1994) X-ray-diffraction, multidimensional NMR-spectroscopy, and MM2* calculations on chiral allyl complexes of palladium(II). Organometallics 13:83

    Article  CAS  Google Scholar 

  23. Szabo KJ (1996) Effects of the ancillary ligands on palladium-carbon bonding in (It1;eta;3-allyl)palladium complexes. Implications for nucleophilic attack at the allylic carbons. Organometallics 15:1128

    Article  CAS  Google Scholar 

  24. Branchadell V, Moreno-Manas M, Pajuelo F, Pleixats R (1999) Density functional study on the regioselectivity of nucleophilic attack in 1,3-disubstituted (diphosphino) (It1;eta;3-allyl)palladium cations. Organometallics 18:4934

    Article  CAS  Google Scholar 

  25. Delbecq F, Lapouge C (2000) Regioselectivity of the nucleophilic addition to (It1;eta;3-allyl) palladium complexes. A theoretical study. Organometallics 19:2716

    Article  CAS  Google Scholar 

  26. Kollmar M, Goldfuss B, Reggelin M, Rominger F, Helmchen G (2001) (Phosphanyloxazoline)palladium complexes, part I: (It1;eta;3-1,3-dialkylallyl)(phosphanyloxazoline)palladium complexes: X-ray crystallographic studies, NMR investigations, and quantum-chemical calculations. Chem-Eur J 7:4913

    Article  CAS  Google Scholar 

  27. Kollmar M, Steinhagen H, Janssen JP, Goldfuss B, Malinovskaya SA, Vazquez J, Rominger F, Helmchen G (2002) (Phosphanyloxazoline)palladium complexes, part II It1;ndash; (It1;eta;3-Phenylallyl)(phosphanyloxazoline)palladium complexes: X-ray crystallographic studies, NMR investigations, and ab initio/DFT calculations. Chem-Eur J 8:3103

    Article  CAS  Google Scholar 

  28. Kleimark J, Johansson C, Olsson S, HIt1;aring;kansson M, Hansson S, It1;Aring;kermark B, Norrby PO (2011) Sterically governed selectivity in palladium-assisted allylic alkylation. Organometallics 30:230

    Article  CAS  Google Scholar 

  29. Kurosawa H, Hirako K, Natsume S, Ogoshi S, Kanehisa N, Kai Y, Sakaki S, Takeuchi K (1996) New insights into structures, stability, and bonding of It1;mu;-allyl ligands coordinated with Pd-Pd and Pd-Pt fragments. Organometallics 15:2089

    Article  CAS  Google Scholar 

  30. Sakaki S, Takeuchi K, Sugimoto M, Kurosawa H (1997) Geometries, bonding nature, and relative stabilities of dinuclear palladium(I) pi-allyl and mononuclear palladium(II) pi-allyl complexes. A theoretical study. Organometallics 16:2995

    Article  CAS  Google Scholar 

  31. Casarin M, Pandolfo L, Vittadini A (2001) UV-photoelectron spectra of [M(It1;eta;3-C3H5)(2)] (M It1;equals; Ni, Pd, Pt) revisited: a quasi-relativistic density functional study. Organometallics 20:754

    Article  CAS  Google Scholar 

  32. Szabo KJ (2000) Umpolung of the allylpalladium reactivity: mechanism and regioselectivity of the electrophilic attack on bis-allylpalladium complexes formed in palladium-catalyzed transformations. Chem-Eur J 6:4413

    Article  CAS  Google Scholar 

  33. Ruegger H, Kunz RW, Ammann CJ, Pregosin PS (1991) 2D-NOESY studies on [Pd- It1;eta;3-C10h15)((R)(It1;plus;)-Binap)]It1;plus; defining the relative spatial orientation of the phenyl and It1;pi;-allyl moieties. Magn Reson Chem 29:197

    Article  CAS  Google Scholar 

  34. Ammann CJ, Pregosin PS, Ruegger H, Albinati A, Lianza F, Kunz RW (1992) Chemistry of Pdii complexes containing both Binap (2'2'-bis(diphenylphosphino)binaphthyl) and a It1;eta;3-pinene or It1;eta;3-allyl ligand - NMR-studies on [Pd(It1;eta;3-C10H15)(S(-)Binap)] (CF3SO3) It1;ndash; the crystal-structure of [Pd(It1;eta;3-C10H15)(4,4'-dimethylbipyridine)](CF3SO3). J Organomet Chem 423:415

    Article  CAS  Google Scholar 

  35. Jonasson C, Kritikos M, Backvall JE, Szabo KJ (2000) Asymmetric allyl-metal bonding in substituted (It1;eta;3-allyl)palladium complexes: X-ray structures of cis- and trans-4-acetoxy-[It1;eta;3-(1,2,3)-cyclohexenyl]palladium chloride dimers. Chem-Eur J 6:432

    Article  CAS  Google Scholar 

  36. Blochl PE, Togni A (1996) First-principles investigation of enantioselective catalysis: asymmetric allylic amination with Pd complexes bearing P,N-ligands. Organometallics 15:4125

    Article  Google Scholar 

  37. Sjogren M, Hansson S, Norrby PO, Akermark B, Cucciolito ME, Vitagliano A (1992) Selective stabilization of the antiisomer of (It1;eta;3-Allyl)palladium and (It1;eta;3-Allyl)platinum complexes. Organometallics 11:3954

    Article  Google Scholar 

  38. Vrieze K (1975) Dynamic nuclear magnetic resonance spectroscopy. Academic Press, New York

    Google Scholar 

  39. Jutand A, Mosleh A (1995) Rate and mechanism of oxidative addition of aryl triflates to zerovalent palladium complexes It1;ndash; evidence for the formation of cationic (sigma-aryl)palladium complexes. Organometallics 14:1810

    Article  CAS  Google Scholar 

  40. Roy AH, Hartwig JF (2004) Oxidative addition of aryl sulfonates to Palladium(0) complexes of mono- and bidentate phosphines. Mild addition of aryl tosylates and the effects of anions on rate and mechanism. Organometallics 23:194

    Article  CAS  Google Scholar 

  41. Szabo KJ (2004) Palladium-catalyzed electrophilic allylation reactions via bis(allyl)palladium complexes and related intermediates. Chem-Eur J 10:5269

    Article  Google Scholar 

  42. Johansson C, Lloyd-Jones GC, Norrby PO (2010) Memory and dynamics in Pd-catalyzed allylic alkylation with P,N-ligands. Tetrahedron-Asymmetry 21:1585

    Article  CAS  Google Scholar 

  43. Hansson S, Norrby PO, Sjogren MPT, Akermark B, Cucciolito ME, Giordano F, Vitagliano A (1993) Effects of phenanthroline type ligands on the dynamic processes of (It1;eta;3-allyl)palladium complexes It1;ndash; molecular-structure of (2,9-dimethyl-1,10-phenanthroline)[(1,2,3-It1;eta;)-3-methyl-2-butenyl]-chloropalladium. Organometallics 12:4940

    Article  CAS  Google Scholar 

  44. Albinati A, Kunz RW, Ammann CJ, Pregosin PS (1991) 2D NOESY of palladium It1;pi;-allyl complexes It1;ndash; reporter ligands, complex dynamics, and the X-ray structure of [Pd(It1;eta;3-C4H7)(Bpy)](CF3SO3) (Bpy It1;equals; Bipyridine). Organometallics 10:1800

    Article  CAS  Google Scholar 

  45. Crociani B, Dibianca F, Giovenco A, Boschi T (1987) Reactions of pyridine-2-carbaldimines with chloro-bridged palladium(II) and platinum(II) 2-methylallyl dimers It1;ndash; solution behavior of the cationic complexes [M(It1;eta;3-2-MeC3H4)(Py-2-CHIt1;equals;NR)]It1;plus;. Inorg Chim Acta 127:169

    Article  CAS  Google Scholar 

  46. Gogoll A, Ornebro J, Grennberg H, Backvall JE (1994) Mechanism of apparent It1;pi;-allyl rotation in (It1;pi;-allyl)palladium complexes with bidentate nitrogen ligands. J Am Chem Soc 116:3631

    Article  CAS  Google Scholar 

  47. Goodman JM, Silva MA (2003) QRC: a rapid method for connecting transition structures to reactants in the computational analysis of organic reactivity. Tetrahedron Lett 44:8233

    Article  CAS  Google Scholar 

  48. Weinhold FL, Landis F (2005) Valency and bonding. Cambridge University Press, Cambridge

    Book  Google Scholar 

  49. Amatore C, Gamez S, Jutand A, Meyer G, Moreno-Manas M, Morral L, Pleixats R (2000) Oxidative addition of allylic carbonates to palladium(0) complexes: reversibility and isomerization. Chem-Eur J 6:3372

    Article  CAS  Google Scholar 

  50. Cantat T, Agenet N, Jutand A, Pleixats R, Moreno-Manas M (2005) The effect of chloride ions on the mechanism of the oxidative addition of cyclic allylic carbonates to Pd-0 complexes by formation of neutral [(It1;eta;1-allyl)PdClL2] complexes. Eur J Org Chem 2005:4277

    Article  Google Scholar 

  51. Granberg KL, Backvall JE (1992) Isomerization of (It1;pi;-allyl)palladium complexes via nucleophilic displacement by palladium(0) It1;ndash; a common mechanism in palladium(0)-catalyzed allylic substitution. J Am Chem Soc 114:6858

    Article  CAS  Google Scholar 

  52. Martin JT, Oslob JD, Akermark B, Norrby PO (1995) A detailed study of (It1;eta;3-cyclohexenyl)palladium systems. Acta Chem Scand 49:888

    Article  CAS  Google Scholar 

  53. Curtis MD, Eisenstein O (1984) A molecular-orbital analysis of the regioselectivity of nucleophilic-addition to It1;eta;3-allyl complexes and the conformation of the It1;eta;3-allyl ligand in L3(CO)2(It1;eta;3-C3H5)MoII complexes. Organometallics 3:887

    Article  CAS  Google Scholar 

  54. Hegedus LS, Darlington WH, Russell CE (1980) Cyclopropanation of ester enolates by It1;pi;-allylpalladium chloride complexes. J Org Chem 45:5193

    Article  CAS  Google Scholar 

  55. Aranyos A, Szabo KJ, Castano AM, Backvall JE (1997) Central versus terminal attack in nucleophilic addition to (It1;pi;-allyl)palladium complexes. Ligand effects and mechanism. Organometallics 16:1058

    Article  CAS  Google Scholar 

  56. Szabo KJ (1998) Effects of polar gamma-substituents on the structure and stability of palladacyclobutane complexes. J Mol Struc-Theochem 455:205

    Article  CAS  Google Scholar 

  57. Ward TR (1996) Regioselectivity of nucleophilic attack on [Pd(allyl)(phosphine)(imine)]complexes: a theoretical study. Organometallics 15:2836

    Article  CAS  Google Scholar 

  58. Oslob JD, Akermark B, Helquist P, Norrby PO (1997) Steric influences on the selectivity in palladium-catalyzed allylation. Organometallics 16:3015

    Article  CAS  Google Scholar 

  59. Bantreil X, Prestat G, Moreno A, Madec D, Fristrup P, Norrby PO, Pregosin PS, Poli G (2011) It1;gamma;- and It1;delta;-lactams through palladium-catalyzed intramolecular alkylation: enantioselective synthesis, NMR investigation, and DFT rationalization. Chem-Eur J 17:2885

    Article  CAS  Google Scholar 

  60. Betz A, Yu L, Reiher M, Gaumont AC, Jaffres PA, Gulea M (2008) (N, N) vs. (N, S) chelation of palladium in asymmetric allylic substitution using bis(thiazoline) ligands: a theoretical and experimental study. J Organomet Chem 693:2499

    Article  CAS  Google Scholar 

  61. Butts CP, Filali E, Lloyd-Jones GC, Norrby PO, Sale DA, Schramm Y (2009) Structure-based rationale for selectivity in the asymmetric allylic alkylation of cycloalkenyl esters employing the Trost It1;lsquo;Standard Ligand' (TSL): isolation, analysis and alkylation of the monomeric form of the cationic It1;eta;3-cyclohexenyl complex [(It1;eta;3-c-C6H9)Pd(TSL)](It1;plus;). J Am Chem Soc 131:9945

    Article  CAS  Google Scholar 

  62. Calabro G, Drommi D, Bruno G, Faraone F (2004) Effect of chelating vs. bridging coordination of chiral short-bite P-X-P (X It1;equals; C, N, O) ligands in enantioselective palladium-catalysed allylic substitution reactions. Dalton Trans 2004:81

    Article  Google Scholar 

  63. Mazuela J, Paptchikhine A, Tolstoy P, Pamies O, Dieguez M, Andersson PG (2010) A new class of modular P, N-ligand library for asymmetric Pd-catalyzed allylic substitution reactions: a study of the key Pd-It1;pi;-allyl intermediates. Chem-Eur J 16:620

    Article  CAS  Google Scholar 

  64. Moberg C, Bremberg U, Hallman K, Svensson M, Norrby PO, Hallberg A, Larhed M, Csoregh I (1999) Selectivity and reactivity in asymmetric allylic alkylation. Pure Appl Chem 71:1477

    Article  CAS  Google Scholar 

  65. PenaCabrera E, Norrby PO, Sjogren M, Vitagliano A, DeFelice V, Oslob J, Ishii S, ONeill D, Akermark B, Helquist P (1996) Molecular mechanics predictions and experimental testing of asymmetric palladium-catalyzed allylation reactions using new chiral phenanthroline ligands. J Am Chem Soc 118:4299

    Article  CAS  Google Scholar 

  66. Piechaczyk O, Thoumazet C, Jean Y, le Floch P (2006) DFT study on the palladium-catalyzed allylation of primary amines by allylic alcohol. J Am Chem Soc 128:14306

    Article  CAS  Google Scholar 

  67. Madec D, Prestat G, Martini E, Fristrup P, Poli G, Norrby PO (2005) Surprisingly mild It1;ldquo;enolate-counterion-freeIt1;rdquo; Pd(0)-catalyzed intramolecular allylic alkylations. Org Lett 7:995

    Article  CAS  Google Scholar 

  68. Macsari I, Szabo KJ (1999) Nature of the interactions between the It1;beta;-silyl substituent and allyl moiety in (It1;eta;3-allyl)palladium complexes. a combined experimental and theoretical study. Organometallics 18:701

    Article  CAS  Google Scholar 

  69. Szabo KJ (1996) Effects of It1;beta;-substituents and ancillary ligands on the structure and stability of (It1;eta;3-allyl)palladium complexes. implications for the regioselectivity in nucleophilic addition reactions. J Am Chem Soc 118:7818

    Article  CAS  Google Scholar 

  70. Szabo KJ (1997) Nature of the interactions between polar It1;beta;-substituents and palladium in It1;eta;3-allylpalladium complexes It1;ndash; a combined experimental and theoretical study. Chem-Eur J 3:592

    Article  CAS  Google Scholar 

  71. Szabo KJ (2001) Nature of the interaction between It1;beta;-substituents and the allyl moiety in (It1;eta;3-allyl)palladium complexes. Chem Soc Rev 30:136

    Article  CAS  Google Scholar 

  72. Szabo KJ, Hupe E, Larsson ALE (1997) Stereoelectronic control on the kinetic stability of It1;beta;-acetoxy-substituted (It1;eta;3-allyl)palladium com plexes in a mild acidic medium. Organometallics 16:3779

    Article  CAS  Google Scholar 

  73. Sakaki S, Nishikawa M, Ohyoshi A (1980) A palladium-catalyzed reaction of a It1;pi;-allyl ligand with a nucleophile It1;ndash; an MO study about a feature of the reaction and a ligand effect on the reactivity. J Am Chem Soc 102:4062

    Article  CAS  Google Scholar 

  74. Goldfuss B, Kazmaier U (2000) Electronic differentiations in palladium alkene complexes: trans-phosphine preference of allylic leaving groups. Tetrahedron 56:6493

    Article  CAS  Google Scholar 

  75. Svensen N, Fristrup P, Tanner D, Norrby PO (2007) Memory effects in palladium-catalyzed allylic Alkylations of 2-cyclohexen-1-yl acetate. Adv Synth Catal 349:2631

    Article  CAS  Google Scholar 

  76. Trost BM, Breit B, Organ MG (1994) On the nature of the asymmetric induction in a palladium-catalyzed allylic alkylation. Tetrahedron Lett 35:5817

    Article  CAS  Google Scholar 

  77. Barbaro P, Pregosin PS, Salzmann R, Albinati A, Kunz RW (1995) 1,3-diphenylallyl complexes of palladium(II) It1;ndash; NMR, X-ray, and catalytic studies. Organometallics 14:5160

    Article  CAS  Google Scholar 

  78. Sakaki S, Satoh H, Shono H, Ujino Y (1996) Ab initio MO study of the geometry, It1;eta;3 It1;DoubleLeftRightArrow; It1;eta;1 conversion, and reductive elimination of a palladium(II) It1;eta;3-allyl hydride complex and its platinum(II) analogue. Organometallics 15:1713

    Article  CAS  Google Scholar 

  79. Biswas B, Sugimoto M, Sakaki S (1999) Theoretical study of the structure, bonding nature, and reductive elimination reaction of Pd(XH3)( It1;eta;3-C3H5) (PH3) (X It1;equals; C, Si, Ge, Sn). Hypervalent behavior of group 14 elements. Organometallics 18:4015

    Article  CAS  Google Scholar 

  80. Mendez M, Cuerva JM, Gomez-Bengoa E, Cardenas DJ, Echavarren AM (2002) Intramolecular coupling of allyl carboxylates with allyl stannanes and allyl silanes: a new type of reductive elimination reaction? Chem-Eur J 8:3620

    Article  CAS  Google Scholar 

  81. Hara M, Ohno K, Tsuji J (1971) Palladium-catalysed hydrosilation of olefins and polyenes. J Chem Soc D - Chem Comm 1971:247

    Article  Google Scholar 

  82. Nakamura H, Asao N, Yamamoto Y (1995) Palladium-catalyzed and platinum-catalyzed addition of aldehydes with allylstannanes. J Chem Soc Chem Commun 1995:1273

    Article  Google Scholar 

  83. Solin N, Narayan S, Szabo KJ (2001) Control of the regioselectivity in catalytic transformations involving amphiphilic bis-allylpalladium intermediates: mechanism and synthetic applications. J Org Chem 66:1686

    Article  CAS  Google Scholar 

  84. Fristrup P, Ahlquist M, Tanner D, Norrby PO (2008) On the nature of the intermediates and the role of chloride ions in Pd-catalyzed allylic alkylations: added insight from density functional theory. J Phys Chem A 112:12862

    Article  CAS  Google Scholar 

  85. Garcia-Iglesias M, Bunuel E, Cardenas DJ (2006) Cationic (It1;eta;1-allyl)-palladium complexes as feasible intermediates in catalyzed reactions. Organometallics 25:3611

    Article  CAS  Google Scholar 

  86. Aydin J, Kumar KS, Sayah MJ, Wallner OA, Szabo KJ (2007) Synthesis and catalytic application of chiral 1,1'-bi-2-naphthol- and biphenanthrol-based pincer complexes: selective allylation of sulfonimines with allyl stannane and allyl trifluoroborate. J Org Chem 72:4689

    Article  CAS  Google Scholar 

  87. Solin N, Narayan S, Szabo KJ (2001) Palladium-catalyzed tandem bis-allylation of isocyanates. Org Lett 3:909

    Article  CAS  Google Scholar 

  88. Solin N, Kjellgren J, Szabo KJ (2004) Pincer complex-catalyzed allylation of aldehyde and imine substrates via nucleophilic It1;eta;1-allyl palladium intermediates. J Am Chem Soc 126:7026

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per-Ola Norrby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kleimark, J., Norrby, PO. (2011). Computational Insights into Palladium-Mediated Allylic Substitution Reactions. In: Kazmaier, U. (eds) Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis. Topics in Organometallic Chemistry, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3418_2011_8

Download citation

Publish with us

Policies and ethics