Skip to main content

A study of the properties of water-in-oil microemulsions in the subzero temperature range by differential scanning calorimetry

  • Conference paper
  • First Online:
New Trends in Colloid Science

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 73))

Abstract

The thermal properties of two w/o microemulsions and one micellar solution were systematically investigated by means of differential scanning calorimetry (DSC). H2O/hexadecane/K-oleate/hexanol and H2O/dodecane/K-oleate/hexanol microemulsions with the mass ratios K-Oleate/hexanol=0.6 and (K-oleate+Hexanol)/oil=0.4 and a H2O/AOT/isooctane 3 % micellar solution were studied as a function of increasing water concentration. Both DSC endothermal and DSC exothermal analyses were performed in the temperature interval 123–303 K. The dependence of the thermal properties upon both the particular temperature rate (1-2-4-6-8 K/min), and thermal cycling with repeated freezing/thawing runs, was studied. The freezing behavior of the water dispersed phase was analyzed in detail. Preliminary results are also reported about low temperature storage effects.

The analysis of endothermic processes due to the melting of water has shown that this component may exist into two configurations, namely, free and interphasal distinguished by the melting temperatures of 273 K and 263 K respectively. The exothermic analysis has proved very effective in the identification of the structural evolution of the systems as a function of water addition. The freezing temperature of the overcooled water fraction was found to exhibit a stepwise trend upon water addition, each “step” corresponding to specific and well defined both DSC-ENDO and DSC-EXO characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bellocq AM, Fourche G (1980) J Coll Interf Sci 78:275

    Article  CAS  Google Scholar 

  2. Bellocq AM, Fourche G, Chabrat P, Letamendia L, Rouch J, Vaucamps C (1980) Optica Acta 27:1629

    CAS  Google Scholar 

  3. Shah DO, Hamlin RM (1971) Science 171:483

    Article  CAS  Google Scholar 

  4. Boned C, Clausse M, Lagourette B, Peyrelasse J, McClean VER, Sheffard RJ (1980) J Phys Chem 84:1520

    Article  CAS  Google Scholar 

  5. Caponetti E, Magid LJ, Hayter JB, Johnson Jr JS (1986) Lang-muir 2:722

    Article  CAS  Google Scholar 

  6. Senatra D, Gambi CMC, Neri AP (1981) J Coll Interf Sci79:433

    Article  Google Scholar 

  7. Wong M, Thomas JK, Grätzel M (1976) J Am Chem Soc 98, 9:2391

    Article  Google Scholar 

  8. Zulauf M, Eiche HF (1979) J Phys Chem 83:480

    Article  CAS  Google Scholar 

  9. Kotlarchyk M, Huang JS, Sow-Hsin Chen (1985) J Phys Chem 89:4382

    Article  CAS  Google Scholar 

  10. Senatra D, Gabrielli G, Guarini GGT (1986) Europhys Lett 2:455

    Article  CAS  Google Scholar 

  11. Senatra D, Guarini GGT, Gabrielli G, Zoppi M (1984) J Phys, Paris 45:1159

    CAS  Google Scholar 

  12. Senatra D, Guarini GGT, Gabrielli G, Zoppi M (1985) In: Shah DO (ed) Macro-Microemulsions. Theory and Applications, ACS Symposium Series, Book 272, p 133

    Google Scholar 

  13. Senatra D, Gabrielli G, Guarini GGT (1987) In: Martellucci S, Chester AN (eds) Progress in Microemulsions, Plenum, New York, London, in press

    Google Scholar 

  14. Francks F (ed) (1975) Water a Comprehensive Treatise, Vol 5 and (1979) In: Water A comprehensive treatise, Vol 7

    Google Scholar 

  15. Mazur P (1965) Ann New York Acad Sci 125:658

    Article  CAS  Google Scholar 

  16. Le Moigne J, Pouyet G, Francois J (1980) J Coll Polym Sci 258:1383

    Article  Google Scholar 

  17. Banin A, Anderson PM (1975) Nature 255:261

    Article  CAS  Google Scholar 

  18. Boned C, Peyrelasse J, Moha-Quchane M (1986) J Phys Chem 90:634

    Article  CAS  Google Scholar 

  19. Senatra D, Gabrielli G, Guarini GGT (1986) Annali di Chimica, Italian Chemical Soc, in press

    Google Scholar 

  20. Clausse M, Boned C, Peyrelasse J, Lagourette B, McClean VER, Sheppard RJ (1981) In: Shah DO (ed) Surface Phenomena in Enhanced Oil Recovery, Plenum Pree New York, London 199

    Google Scholar 

  21. Morgan JoL, Drake NE, Mraw SC (1985) Proc A.F.C.A.T. and A.I.C.A.T. Journées de Calorimetrie at Analyse Thermiquie, 53

    Google Scholar 

  22. Rassmussen DA, Mac Kenzie AP (1972) In: Jellinek HHG (ed) Water Structure at the Water-Polymer Interface

    Google Scholar 

  23. Broto F, Clausse D (1976) J Phys C Solid State Phys 9:4251

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Hoffmann

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Senatra, D., Zhou, Z., Pieraccini, L. (1987). A study of the properties of water-in-oil microemulsions in the subzero temperature range by differential scanning calorimetry. In: Hoffmann, H. (eds) New Trends in Colloid Science. Progress in Colloid & Polymer Science, vol 73. Steinkopff. https://doi.org/10.1007/3-798-50724-4_64

Download citation

  • DOI: https://doi.org/10.1007/3-798-50724-4_64

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0724-1

  • Online ISBN: 978-3-7985-1697-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics