Skip to main content

Gas Diffusion through the Fractal Landscape of the Lung: How Deep Does Oxygen Enter the Alveolar System?

  • Conference paper
Fractals in Biology and Medicine

Summary

We investigate oxygen transport to and across alveolar membranes in the human lung, the last step in the chain of events that takes oxygen through the bronchial airways to the peripheral, acinar airways. This step occurs by diffusion. We carry out analytic and numerical computations of the oxygen current for fractal, space-filling models of the acinus, based on morphological data of the acinus and appropriate values for the transport constants, without adjustable parameters. The computations address the question whether incoming oxygen reaches the entire available membrane surface (reaction-limited, unscreened oxygen current), a large part of the surface (mixed reaction/diffusion-limited, partly screened current), or only the surface near the entrance of the acinus (diffusion-limited, completely screened current). The analytic treatment identifies the three cases as sharply delineated screening regimes and finds that the lung operates in the partial-screening regime, close to the transition to no screening, for respiration at rest; and in the no-screening regime for respiration at exercise. The resulting currents agree well with experimental values. We test the analytic treatment by comparing it with numerical results for two-dimensional acinus models and find very good agreement. The results provide quantitative support for the conclusion, obtained in other work, that the space-filling fractal architecture of the lung is optimal with respect to active membrane surface area and minimum power dissipation. At the level of the bronchial tree, we show that the space-filling architecture provides optimal slowing down of the airflow from convection in the bronchial airways to diffusion in the acinar airways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mandelbrot B.B. The Fractal Geometry of Nature. San Francisco: Freeman, 1982.

    MATH  Google Scholar 

  2. Bunde A., Havlin S. Fractals and Disordered Systems, 2nd ed. New York: Springer, 1996.

    MATH  Google Scholar 

  3. Sapoval B. Universalités et Fractales. Paris: Flammarion, 1997.

    MATH  Google Scholar 

  4. Meakin P. Fractals, Scaling, and Growth Far from Equilibrium. Cambridge, UK: Cambridge University Press, 1998.

    MATH  Google Scholar 

  5. Gheorghiu S., Pfeifer P. Nonstandard roughness of terraced surfaces. Phys Rev Lett 2000; 85: 3894–3897.

    Article  PubMed  CAS  Google Scholar 

  6. Pfeifer P., Gheorghiu S. Counterexamples in fractal roughness analysis and their physical properties. Int J Mod Phys B 2001; 15: 3197–3206.

    Google Scholar 

  7. Pfeifer P. Characterization of surface irregularity. In: Laszlo P., ed. Preparative Chemistry Using Supported Reagents. San Diego: Academic Press, 1987; 13–33.

    Google Scholar 

  8. Coppens M.-O., Froment G.F. Catalyst design accounting for the fractal surface morphology. Chem Engng J 1996; 64: 69–76.

    CAS  Google Scholar 

  9. Gheorghiu S., Coppens M.-O. Optimal bimodal pore networks for heterogeneous catalysis. AIChE J 2004; 50: 812–820.

    Article  CAS  Google Scholar 

  10. Fawcett D.W. A Textbook of Histology, 12th ed. New York: Chapman & Hall, 1994.

    Google Scholar 

  11. Weibel E.R. The Pathway for Oxygen. Cambridge, MA: Harvard University Press, 1984.

    Google Scholar 

  12. Weibel E.R. Symmorphosis. Cambridge, MA: Harvard University Press, 2000.

    Google Scholar 

  13. Martin P.M., Monzyk B.F., Burckle E.C., Busch J.R., Gilbert R.J., Dasse K.A. Thin films are helping fight against pulmonary diseases: development of a photolytic artificial lung. Vac Techn & Coating 2004; Aug. 2004: 40–49.

    Google Scholar 

  14. Weibel E.R. Fractal geometry: a design principle for living organisms. Am J Physiol 1991; 261: L361–L369.

    PubMed  CAS  Google Scholar 

  15. West B.J. Fractal Physiology and Chaos in Medicine. Singapore: World Scientific, 1990.

    MATH  Google Scholar 

  16. Shlesinger M.F, West B.J. Complex fractal dimension of the bronchial tree. Phys Rev Lett 1991; 67: 2106–2108.

    PubMed  Google Scholar 

  17. West G.B., Brown J.H., Enquist B.J. A general model for the origin of allometric scaling laws in biology. Science 1997; 276: 122–126.

    Article  PubMed  CAS  Google Scholar 

  18. Mauroy B., Filoche M., Weibel E.R., Sapoval B. An optimal bronchial tree may be dangerous. Nature 2004; 427: 633–636.

    Article  PubMed  CAS  Google Scholar 

  19. Sapoval B. Transfer to and across irregular membranes modeled by fractal geometry. In: Nonnenmacher T.F., Losa G.A, Weibel E.R., eds. Fractals in Biology and Medicine. Basel: Birkhäuser, 1994; 241–250.

    Google Scholar 

  20. Sapoval B., Filoche M., Weibel E.R. Smaller is better—but not too small: a physical scale for the design of the mammalian pulmonary acinus. Proc Natl Acad Sci USA 2002; 99: 10411–10416.

    Article  PubMed  CAS  Google Scholar 

  21. Felici M., Filoche M., Sapoval B. Diffusional screening in the human pulmonary acinus. J Appl Physiol 2003; 94: 2010–2016.

    PubMed  CAS  Google Scholar 

  22. Felici M., Filoche M., Sapoval B. Renormalized random walk study of oxygen absorption in the human lung. Phys Rev Lett 2004; 92: 068101-(1-4).

    Google Scholar 

  23. Frauenfelder H. Complexity in proteins. Nature Struct Biol 1995; 2: 821–823.

    Article  PubMed  CAS  Google Scholar 

  24. Murray C.D. The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc Natl Acad Sci USA 1926; 12: 207–214.

    Google Scholar 

  25. Gheorghiu S., Kjelstrup S., Pfeifer P., Coppens M.-O. Is the lung an optimal gas exchanger? In this volume.

    Google Scholar 

  26. Adam G., Delbrück M. Reduction of dimensionality in biological diffusion processes. In: Rich A., Davidson N., eds. Structural Chemistry and Molecular Biology. San Francisco: Freeman, 1968; 198–215.

    Google Scholar 

  27. Kac M. Probabilistic methods in some problems of scattering theory. Rocky Mountain J Math 1974; 4: 511–537.

    MATH  MathSciNet  Google Scholar 

  28. Simon B. Functional Integration and Quantum Physics. New York: Academic Press, 1979; 231–245.

    MATH  Google Scholar 

  29. Berg H.C., Purcell E.M. Physics of chemoreception. Biophys J 1977; 20: 193–219.

    Article  PubMed  CAS  Google Scholar 

  30. Makarov N.G. On the distortion of boundary sets under conformal mappings. Proc London Math Soc 1985; 51: 369–384.

    MATH  MathSciNet  Google Scholar 

  31. Pfeifer P., Sapoval B. Optimization of diffusive transport to irregular surfaces with low sticking probability. Mat Res Soc Symp Proc. 1995; 366: 271–276.

    CAS  Google Scholar 

  32. Pfeifer P., Hagerty P.J. Screening transition in diffusion to and across fractal surfaces. In: Giona M., Biardi G., eds. Fractals and Chaos in Chemical Engineering. Singapore: World Scientific, 1997; 151–164.

    Google Scholar 

  33. Filoche M., Sapoval B. A simple method to compute the response of nonhomogeneous and irregular interfaces: electrodes and membranes. J Phys I France 1997; 7: 1487–1498.

    Article  CAS  Google Scholar 

  34. Sapoval B., Filoche M., Karamanos K., Brizzi R. Can one hear the shape of an electrode? I. Numerical study of the active zone in Laplacian transfer. Eur Phys J B 1999; 9: 739–753.

    Article  CAS  Google Scholar 

  35. Sagan H. Space-Filling Curves. New York: Springer, 1994; 49–68.

    MATH  Google Scholar 

  36. Haefeli-Bleuer B., Weibel E.R. Morphometry of the human pulmonary acinus. Anat Rec 1988; 220; 401–414.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel

About this paper

Cite this paper

Hou, C., Gheorghiu, S., Coppens, MO., Huxley, V.H., Pfeifer, P. (2005). Gas Diffusion through the Fractal Landscape of the Lung: How Deep Does Oxygen Enter the Alveolar System?. In: Losa, G.A., Merlini, D., Nonnenmacher, T.F., Weibel, E.R. (eds) Fractals in Biology and Medicine. Mathematics and Biosciences in Interaction. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7412-8_2

Download citation

Publish with us

Policies and ethics