Skip to main content

Spectral Theory of Sturm-Liouville Operators on Infinite Intervals: A Review of Recent Developments

  • Chapter
Sturm-Liouville Theory

Abstract

This review discusses some of the central developments in the spectral theory of Sturm-Liouville operators on infinite intervals over the last thirty years or so. We discuss some of the natural questions that occur in this framework and some of the main models that have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Albrecht, J.H. Smet, K. von Klitzing, D. Weiss, V. Umansky and H. Schweizer, Evidence of Hofstadters fractal energy spectrum in the quantized Hall conductance, Phys. Rev. Lett. 86 (2001), 147–150.

    PubMed  Google Scholar 

  2. P.W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109 (1958), 1492–1505.

    Google Scholar 

  3. S. Aubry and G. André, Analyticity breaking and Anderson localization in incommensurate lattices, Ann. Israel Phys. Soc. 3 (1980), 133–164.

    Google Scholar 

  4. A. Avila and S. Jitomirskaya, in preparation.

    Google Scholar 

  5. A. Avila and R. Krikorian, Reducibility or non-uniform hyperbolicity for quasiperiodic Schrödinger cocycles, preprint, 2003.

    Google Scholar 

  6. J. Avron, P.M.H. van Mouche and B. Simon, On the measure of the spectrum for the almost Mathieu operator, Commun. Math. Phys. 132 (1990), 103–118.

    Google Scholar 

  7. J.E. Avron, D. Osadchy and R. Seller, A topological look at the quantum Hall effect, Physics Today, August 2003, 38–42.

    Google Scholar 

  8. J. Avron and B. Simon, Transient and recurrent spectrum, J. Funct. Anal. 43 (1981), 1–31.

    Google Scholar 

  9. J. Avron and B. Simon, Singular continuous spectrum for a class of almost periodic Jacobi matrices, Bull. Amer. Math. Soc. 6 (1982), 81–85.

    Google Scholar 

  10. J. Avron and B. Simon, Almost periodic Schrodinger operators II: The integrated density of states, Duke Math. J. 50 (1983), 369–391.

    Google Scholar 

  11. M.Ya. Azbel, Energy spectrum of a conduction electron in a magnetic field, Sov. Phys. JETP 19 (1964), 634–645.

    Google Scholar 

  12. J. Bellissard, R. Lima and D. Testard, A metal-insulator transition for the almost Mathieu model, Commun. Math. Phys. 88 (1983), 207–234.

    Google Scholar 

  13. J. Bellissard and B. Simon, Cantor spectrum for the almost Mathieu equation, J. Funct. Anal. 48 (1982), 408–419.

    Google Scholar 

  14. J. Bourgain and M. Goldstein, On nonperturbative localization with quasi-periodic potential, Ann. of Math. 152 (2000), 835–879.

    Google Scholar 

  15. M.D. Choi, G.A. Elliott and N. Yui, Gauss polynomials and the rotation algebra, Invent. Math. 99 (1990), 225–246.

    Google Scholar 

  16. V. Chulaevsky and F. Delyon, Purely absolutely continuous spectrum for almost Mathieu operators, J. Stat. Phys. 55 (1989), 1279–1284.

    Google Scholar 

  17. H.L. Cycon, R.G. Froese, W. Kirsch and B. Simon, Schrödinger Operators, Springer, Berlin, 1987.

    Google Scholar 

  18. D. Damanik, Gordon-type arguments in the spectral theory of one-dimensional quasicrystals, in Directions in mathematical quasicrystals, 277–305, CRM Monogr. Ser. 13, Providence, R.I., Amer. Math. Soc., 2000.

    Google Scholar 

  19. R. Del Rio, Boundary Conditions and Spectra of Sturm-Liouville Operators, in this volume.

    Google Scholar 

  20. R. Del Rio, S. Jitomirskaya, Y. Last and B. Simon, Operators with singular continuous spectrum IV: Hausdorff dimensions, rank one perturbations, and localization, J. Analyse Math. 69 (1996), 153–200.

    Google Scholar 

  21. R. Del Rio, S. Jitomirskaya, N. Makarov and B. Simon, Singular continuous spectrum is generic, Bull. Amer. Math. Soc. 31 (1994), 208–212.

    Google Scholar 

  22. R. Del Rio, N. Makarov and B. Simon, Operators with singular continuous spectrum II: Rank one operators, Commun. Math. Phys. 165 (1994), 59–67.

    Google Scholar 

  23. F. Delyon, Absence of localisation in the almost Mathieu equation, J. Phys. A 20 (1987), L21–L23.

    Google Scholar 

  24. E. Dinaburg and Ya. Sinai, The one-dimensional Schrödinger equation with a quasiperiodic potential, Funct. Anal. Appl. 9 (1975), 279–289.

    Google Scholar 

  25. A. Figotin and L. Pastur, The positivity of Lyapunov exponent and absence of the absolutely continuous spectrum for the almost-Mathieu equation, J. Math. Phys. 25 (1984), 774–777.

    Google Scholar 

  26. S. Fishman, D.R. Grempel and R.E. Prange, Chaos, quantum recurrences, and Anderson localization, Phys. Rev. Lett. 49 (1982), 509–512.

    Google Scholar 

  27. J. Fröhlich, T. Spencer and P. Wittwer, Localization for a class of one-dimensional quasi-periodic Schrödinger operators, Commun. Math. Phys. 132 (1990), 5–25.

    Google Scholar 

  28. I.M. Gel’fand and B.M. Levitan, On the determination of a differential equation from its spectral function, Izv. Akad. Nauk SSR. Ser. Mat. 15 (1951), 309–360 (Russian); English transl. in Amer. Math. Soc. Transl. Ser. 2 1 (1955), 253–304.

    Google Scholar 

  29. D.J. Gilbert, On subordinacy and analysis of the spectrum of Schrödinger operators with two singular endpoints, Proc. Roy. Soc. Edinburgh Sect. A 112 (1989), 213–229.

    Google Scholar 

  30. D.J. Gilbert, Asymptotic Methods in the Spectral Analysis of Sturm-Liouville Operators, in this volume.

    Google Scholar 

  31. D.J. Gilbert and D. Pearson, On subordinacy and analysis of the spectrum of one-dimensional Schrbdinger operators, J. Math. Anal. 128 (1987), 30–56.

    Google Scholar 

  32. I. Goldsheid, S. Molchanov and L. Pastur, A pure point spectrum of the stochastic one-dimensional Schrödinger equation, Funct. Anal. Appl. 11 (1977), 1–10.

    Google Scholar 

  33. A. Gordon, On the point spectrum of one-dimensional Schrodinger operators, Usp. Math. Nauk 31 (1976), 257–258.

    Google Scholar 

  34. A.Ya. Gordon, Deterministic potential with a pure point spectrum, Math. Notes 48 (1990), 1197–1203.

    Google Scholar 

  35. A. Gordon, S. Jitomirskaya, Y. Last and B. Simon, Duality and singular continuous spectrum in the almost Mathieu equation, Acta Math. 178 (1997), 169–183.

    Google Scholar 

  36. D.R. Grempel, S. Fishman and R.E. Prange, Localization in an incommensurate potential: An exactly solvable model, Phys. Rev. Lett. 49 (1982), 833–836.

    Google Scholar 

  37. D.R. Grempel and R.E. Prange, Quantum dynamics of a nonintegrable system, Phys. Rev. A 29 (1984), 1639–1647.

    Google Scholar 

  38. I. Guarneri, Spectral properties of quantum diffusion on discrete lattices, Europhys. Lett. 10 (1989), 95–100.

    Google Scholar 

  39. I. Guarneri, On an estimate concerning quantum diffusion in the presence of a fractal spectrum, Europhys. Lett. 21 (1993), 729–733.

    Google Scholar 

  40. J.P. Guillement, B. Helffer and P. Treton, Walk inside Hofstadter’s butterfly, J. Phys. France 50 (1989), 2019–2058.

    Google Scholar 

  41. G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Oxford University Press, Oxford, 1979.

    Google Scholar 

  42. P.G. Harper, Single band motion of conduction electrons in a uniform magnetic field, Proc. Phys. Soc. London A 68 (1955), 874–892.

    Google Scholar 

  43. B. Helffer and P. Kerdelhue, On the total bandwidth for the rational Harper’s equation, Commun. Math. Phys. 173 (1995), 335–356.

    Google Scholar 

  44. B. Helffer and J. Sjöstrand, Semi-classical analysis for Harper’s equation III: Cantor structure of the spectrum, Mém. Soc. Math. France (N.S.) 39 (1989), 1–139.

    Google Scholar 

  45. M. Herman, Une méthode pour minorer les exposants de Lyapunov et quelques examples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore en dimension 2, Comm. Math. Helv. 58 (1983), 453–502.

    Google Scholar 

  46. A. Hof, O. Knill and B. Simon, Singular continuous spectrum for palindromic Schrödinger operators, Commun. Math. Phys. 174 (1995), 149–159.

    Google Scholar 

  47. D.R. Hofstadter, Energy levels and wave functions of Bloch electrons in a rational or irrational magnetic field, Phys. Rev. B 14 (1976), 2239–2249.

    Google Scholar 

  48. S. Jitomirskaya, Anderson localization for the almost Mathieu equation; A nonperturbative proof, Commun. Math. Phys. 165 (1993), 49–58.

    Google Scholar 

  49. S. Jitomirskaya, Anderson localization for the almost Mathieu equation II: Point spectrum for λ > 2, Commun. Math. Phys 168 (1995), 563–570.

    Google Scholar 

  50. S. Jitomirskaya, Metal-insulator transition for the almost Mathieu operator, Ann. of Math. 150 (1999), 1159–1175.

    Google Scholar 

  51. S. Jitomirskaya and I.V. Krasovsky, Continuity of the measure of the spectrum for discrete quasiperiodic operators, Math. Res. Lett. 9 (2002), 413–421.

    Google Scholar 

  52. S. Jitomirskaya and Y. Last, Anderson localization for the almost Mathieu operator III: Semi-uniform localization, continuity of gaps, and measure of the spectrum, Commun. Math. Phys. 195 (1998), 1–14.

    Google Scholar 

  53. S. Jitomirskaya and Y. Last, Power law subordinacy and singular spectra I: Half line operators, Acta Math. 183 (1999), 171–189.

    Google Scholar 

  54. S. Jitomirskaya and Y. Last, Power law subordinacy and singular spectra II: Line operators, Commun. Math. Phys. 211 (2000), 643–658.

    Google Scholar 

  55. S. Jitomirskaya and B. Simon, Operators with singular continuous spectrum III: Almost periodic Schrödinger operators, Commun. Math. Phys. 165 (1994), 201–205.

    Google Scholar 

  56. S. Kahn and D.B. Pearson, Subordinacy and spectral theory for infinite matrices, Helv. Phys. Acta 65 (1992), 505–527.

    Google Scholar 

  57. A.Ya. Khinchin, Continued Fractions, Dover, Mineola, 1997.

    Google Scholar 

  58. W. Kirsch, S. Molchanov and L. Pastur, The one-dimensional Schrödinger operator with unbounded potential: The pure point spectrum, Funct. Anal. Appl. 24 (1990), 176–186.

    Google Scholar 

  59. A. Kiselev, Y. Last and B. Simon, Modified Prüfer and EFGP transforms and the spectral analysis of one-dimensional Schrödinger operators, Commun. Math. Phys. 194 (1998), 1–45.

    Google Scholar 

  60. K. von Klitzing, G. Dorda and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45 (1980), 494–497.

    Google Scholar 

  61. S. Kotani, Ljaponov indices determine absolutely continuous spectra of stationary one-dimensional Schrödinger operators, in Stochastic Analysis, 225–248, ed. by K. Ito, North Holland, Amsterdam, 1984.

    Google Scholar 

  62. S. Kotani, Generalized Floquet theory for stationary Schrödinger operators in one dimension, Chaos, Solitons & Fractals 8 (1997), 1817–1854.

    Google Scholar 

  63. H. Kunz and B. Souillard, Sur le spectre des opérateurs aux différences finies aléatoires, Commun. Math. Phys. 78 (1980), 201–246.

    Google Scholar 

  64. Y. Last, A relation between a.c. spectrum of ergodic Jacobi matrices and the spectra of periodic approximants, Commun. Math. Phys. 151 (1993), 183–192.

    Google Scholar 

  65. Y. Last, Zero measure spectrum for the almost Mathieu operator, Commun. Math. Phys. 164 (1994), 421–432.

    Google Scholar 

  66. Y. Last, Quantum dynamics and decompositions of singular continuous spectra, J. Funct. Anal. 142 (1996), 406–445.

    Google Scholar 

  67. Y. Last and B. Simon, Modified Prüfer and EFGP transforms and deterministic models with dense point spectrum, J. Funct. Anal. 154 (1998), 513–530.

    Google Scholar 

  68. Y. Last and B. Simon, Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators, Invent. Math. 135 (1999), 329–367.

    Google Scholar 

  69. Y. Last and M. Wilkinson, A sum rule for the dispersion relations of the rational Harper’s equation, J. Phys. A 25 (1992), 6123–6133.

    Google Scholar 

  70. P.M.H. van Mouche, The coexistence problem for the discrete Mathieu operator, Commun. Math. Phys. 122 (1989), 23–34.

    Google Scholar 

  71. D. Osadchy and J.E. Avron, Hofstadter butterfly as quantum phase diagram, J. Math. Phys. 42 (2001), 5665–5671.

    Google Scholar 

  72. D.B. Pearson, Singular continuous measures in scattering theory, Commun. Math. Phys. 60 (1978), 13–36.

    Google Scholar 

  73. J. Puig, Cantor Spectrum for the almost Mathieu operator, Commun. Math. Phys. 244 (2004), 297–309.

    Google Scholar 

  74. A. Rauh, Degeneracy of Landau levels in crystals, Phys. Status Solidi B 65 (1974), 131–135.

    Google Scholar 

  75. D. Shechtman, I. Blech, D. Gratias and J.W. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53 (1984), 1951–1953.

    Google Scholar 

  76. M. Reed and B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis, rev. ed., Academic Press, New York, 1980.

    Google Scholar 

  77. M. Reed and B. Simon, Methods of Modern Mathematical Physics III: Scattering Theory, Academic Press, New York, 1979.

    Google Scholar 

  78. M. Reed and B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators, Academic Press, New York, 1978.

    Google Scholar 

  79. C.A. Rogers and S.J. Taylor, The analysis of additive set functions in Euclidean space, Acta Math. 101 (1959), 273–302.

    Google Scholar 

  80. C.A. Rogers and S.J. Taylor, Additive set functions in Euclidean space II, Acta Math. 109 (1963), 207–240.

    Google Scholar 

  81. M.A. Shubin, Discrete magnetic Laplacian, Commun. Math. Phys. 164 (1994), 259–275.

    Google Scholar 

  82. B. Simon, Almost periodic Schrodinger operators: A review, Adv. Appl. Math. 3 (1982), 463–490.

    Google Scholar 

  83. B. Simon, Kotani theory for one-dimensional stochastic Jacobi matrices, Commun. Math. Phys. 89 (1983), 227–234.

    Google Scholar 

  84. B. Simon, Operators with singular continuous spectrum I: General operators, Ann. Math. 141 (1995), 131–145.

    Google Scholar 

  85. B. Simon, Operators with singular continuous spectrum VI: Graph Laplacians and Laplace-Beltrami operators, Proc. Amer. Math. Soc. 124 (1996), 1177–1182.

    Google Scholar 

  86. B. Simon, Operators with singular continuous spectrum VII: Examples with borderline time decay, Commun. Math. Phys. 176 (1996), 713–722.

    Google Scholar 

  87. B. Simon, Schrödinger operators in the twentieth century, J. Math. Phys. 41 (2000), 3523–3555.

    Google Scholar 

  88. B. Simon and T. Spencer, Trace class perturbations and the absence of absolutely continuous spectra, Commun. Math. Phys. 125 (1989), 113–125.

    Google Scholar 

  89. B. Simon and G. Stolz, Operators with singular continuous spectrum V: Sparse potentials, Proc. Amer. Math. Soc. 124 (1996), 2073–2080.

    Google Scholar 

  90. Ya.G. Sinai, Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential, J. Stat. Phys. 46 (1987), 861–909.

    Google Scholar 

  91. G. Szegő, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. 23, Providence, R.I., American Mathematical Society 1939; 3rd edition, 1967.

    Google Scholar 

  92. S. Tcheremchantsev, Dynamical analysis of Schrödinger operators with growing sparse potentials, preprint, 2003.

    Google Scholar 

  93. D.J. Thouless, Bandwidth for a quasiperiodic tight binding model, Phys. Rev. B 28 (1983), 4272–4276.

    Google Scholar 

  94. D.J. Thouless, Scaling for the discrete Mathieu equation, Commun. Math. Phys. 127 (1990), 187–193.

    Google Scholar 

  95. D.J. Thouless, M. Kohmoto, M.P. Nightingale and M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett. 49 (1982), 405–408.

    Google Scholar 

  96. D.J. Thouless and Y. Tan, Total bandwidth for the Harper equation III: Corrections to scaling, J. Phys. A 24 (1991), 4055–4066.

    MathSciNet  Google Scholar 

  97. D.J. Thouless and Y. Tan, Scaling, localization and bandwidths for equations with competing periods, Physica A 177 (1991), 567–577.

    Google Scholar 

  98. M. Wilkinson, An exact renormalization group for Bloch electrons in a magnetic field, J. Phys. A 20 (1987), 4337–4354.

    Google Scholar 

  99. A. Zlatoš, Sparse potentials with fractional Hausdorff dimension, J. Funct. Anal. 207 (2004), 216–252.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Last, Y. (2005). Spectral Theory of Sturm-Liouville Operators on Infinite Intervals: A Review of Recent Developments. In: Amrein, W.O., Hinz, A.M., Pearson, D.P. (eds) Sturm-Liouville Theory. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7359-8_5

Download citation

Publish with us

Policies and ethics