Skip to main content

The role of VEGF in the regulation of physiological and pathological angiogenesis

  • Chapter
Mechanisms of Angiogenesis

Part of the book series: Experientia Supplementum ((EXS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267: 10931–10934

    PubMed  CAS  Google Scholar 

  2. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407: 242–248

    PubMed  CAS  Google Scholar 

  3. Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2: 795–803

    PubMed  CAS  Google Scholar 

  4. Ferrara N, Alitalo K (1999) Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 5: 1359–1364

    PubMed  CAS  Google Scholar 

  5. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6: 389–395

    PubMed  CAS  Google Scholar 

  6. Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18: 4–25

    PubMed  CAS  Google Scholar 

  7. Maglione D, Guerriero V, Viglietto G, Delli-Bovi P, Persico MG (1991) Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc Natl Acad Sci USA 88: 9267–9271

    PubMed  ADS  CAS  Google Scholar 

  8. Olofsson B, Pajusola K, Kaipainen A, von Euler G, Joukov V, Saksela O, Orpana A, Pettersson RF, Alitalo K, Eriksson U (1996) Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci USA 93: 2576–2581

    PubMed  ADS  CAS  Google Scholar 

  9. Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, Saksela O, Kalkkinen N, Alitalo K (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 15: 1751

    PubMed  CAS  Google Scholar 

  10. Lee J, Gray A, Yuan J, Luoh SM, Avraham H, Wood WI (1996) Vascular endothelial growth factor-related protein: A ligand and specific activator of the tyrosine kinase receptor Flt4. Proc Natl Acad Sci USA 93: 1988–1992

    PubMed  ADS  CAS  Google Scholar 

  11. Orlandini M, Marconcini L, Ferruzzi R, Oliviero S (1996) Identification of a c-fos-induced gene that is related to the platelet-derived growth factor/vascular endothelial growth factor family [corrected; erratum to be published] Proc Natl Acad Sci USA 93: 11675–11680

    PubMed  ADS  CAS  Google Scholar 

  12. Lyttle DJ, Fraser KM, Flemings SB, Mercer AA, Robinson AJ (1994) Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus. J Virol 68: 84–92

    PubMed  CAS  Google Scholar 

  13. Ogawa S, Oku A, Sawano A, Yamaguchi S, Yazaki Y, Shibuya M (1998) A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J Biol Chem 273: 31273–31282

    PubMed  CAS  Google Scholar 

  14. Karkkainen MJ, Makinen T, Alitalo K (2002) Lymphatic endothelium: A new frontier of metastasis research. Nat Cell Biol 4: E2–5

    PubMed  CAS  Google Scholar 

  15. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246: 1306–1309

    PubMed  ADS  CAS  Google Scholar 

  16. Plouet J, Schilling J, Gospodarowicz D (1989) Isolation and characterization of a newly identified endothelial cell mitogen produced by AtT20 cells. EMBO J 8: 3801–3808

    PubMed  CAS  Google Scholar 

  17. Nagy JA, Vasile E, Feng D, Sundberg C, Brown LF, Detmar MJ, Lawitts JA, Benjamin L, Tan X, Manseau EJ, Dvorak AM, Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med 196: 1497–1506

    PubMed  CAS  Google Scholar 

  18. Matsumoto T, Claesson-Welsh L (2001) VEGF receptor signal transduction Science’s STKE 112 RE21: 1–17

    Google Scholar 

  19. Compernolle V, Brusselmans K, Acker T, Hoet P, Tjwa M, Beck H, Plaisance S, Dor Y, Keshet E, Lupu F, Nemery B et al. (2002) Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med 8: 702–710

    PubMed  CAS  Google Scholar 

  20. Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1: 1024–1028

    PubMed  CAS  Google Scholar 

  21. Gerber HP, Dixit V, Ferrara N (1998) Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 273: 13313–13316

    PubMed  CAS  Google Scholar 

  22. Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, Ferrara N (1998) VEGF regulates endothelial cell survival by the PI3-kinase/akt signal transduction pathway requirement for Flk-1/KDR activation. J Biol Chem 273: 30366–30343

    Google Scholar 

  23. Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal [see comments]. J Clin Invest 103: 159–165

    PubMed  CAS  Google Scholar 

  24. Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK (1996) Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an antivascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci USA 93: 14765–14770

    PubMed  ADS  CAS  Google Scholar 

  25. Gerber HP, Hillan KJ, Ryan AM, Kowalski J, Keller GA, Rangell L, Wright BD, Radtke F, Aguet M, Ferrara N (1999) VEGF is required for growth and survival in neonatal mice. Development 126: 1149–1159

    PubMed  CAS  Google Scholar 

  26. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219: 983–985

    PubMed  ADS  CAS  Google Scholar 

  27. Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146: 1029–1039

    PubMed  CAS  Google Scholar 

  28. Bates DO, Curry FE (1996) Vascular endothelial growth factor increases hydraulic conductivity of isolated perfused microvessels. Am J Physiol 271: H2520–2528

    PubMed  CAS  Google Scholar 

  29. Bates DO, Curry FE (1997) Vascular endothelial growth factor increases microvascular permeability via a Ca(2+)-dependent pathway. Am J Physiol 273: H687–694

    PubMed  CAS  Google Scholar 

  30. Roberts WG, Palade GE (1995) Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 108: 2369–2379

    PubMed  CAS  Google Scholar 

  31. Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W (1998) Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol 140: 947–959

    PubMed  CAS  Google Scholar 

  32. Dvorak HF, Harvey VS, Estrella P, Brown LF, McDonagh J, Dvorak AM (1987) Fibrin containing gels induce angiogenesis. Implications for tumor stroma generation and wound healing. Lab Invest 57: 673–686

    PubMed  CAS  Google Scholar 

  33. Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA (1999) Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cells 4: 915–924

    CAS  Google Scholar 

  34. Ku DD, Zaleski JK, Liu S, Brock TA (1993) Vascular endothelial growth factor induces EDRFdependent relaxation in coronary arteries. Am J Physiol 265: H586–592

    PubMed  CAS  Google Scholar 

  35. Yang R, Thomas GR, Bunting S, Ko A, Ferrara N, Keyt B, Ross J, Jin H (1996) Effects of vascular endothelial growth factor on hemodynamics and cardiac performance. J Cardiovasc Pharmacol 27: 838–844

    PubMed  CAS  Google Scholar 

  36. Henry T, Abraham JA (2000) Review of preclinical and clinical results with vascular endothelial growth factors for therapeutic angiogenesis. Curr Interv Cardiol Rep 2: 228–241

    PubMed  Google Scholar 

  37. Clauss M, Gerlach M, Gerlach H, Brett J, Wang F, Familletti PC, Pan YC, Olander JV, Connolly DT, Stern D (1990) Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J Exp Med 172: 1535–1545

    PubMed  CAS  Google Scholar 

  38. Broxmeyer HE, Cooper S, Li ZH, Lu L, Song HY, Kwon BS, Warren RE, Donner DB (1995) Myeloid progenitor cell regulatory effects of vascular endothelial cell growth factor. Int J Hematol 62: 203–215

    PubMed  CAS  Google Scholar 

  39. Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2: 1096–1103

    PubMed  CAS  Google Scholar 

  40. Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, Tateno M, Hicklin DJ, Zhu Z, Witte L, Crystal RG, Moore MA, Rafii S (2001) Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 193: 1005–1014

    PubMed  CAS  Google Scholar 

  41. Gerber H-P, Malik A, Solar GP, Sherman D, Liang X-H, Meng G, Hong K, Marsters J, Ferrara N (2002) Vascular endothelial growth factor regulates hematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 417: 954–958

    PubMed  ADS  CAS  Google Scholar 

  42. Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW (1991) The vascular endothelial growth factor family: Identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 5: 1806–1814

    Article  PubMed  CAS  Google Scholar 

  43. Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC, Abraham JA (1991) The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 266: 11947–11954

    PubMed  CAS  Google Scholar 

  44. Poltorak Z, Cohen T, Sivan R, Kandelis Y, Spira G, Vlodavsky I, Keshet E, Neufeld G (1997) VEGF145 a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. J Biol Chem 272: 7151–7158

    PubMed  CAS  Google Scholar 

  45. Jingjing L, Xue Y, Agarwal N, Roque RS (1999) Human Muller cells express VEGF183, a novel spliced variant of vascular endothelial growth factor. Invest Ophthalmol Visual Sci 40: 752–759

    CAS  Google Scholar 

  46. Bates DO, Cui TG, Doughty JM, Winkler M, Sugiono M, Shields JD, Peat D, Gillatt D, Harpel SJ (2002) VEGF(165)b, an inhibitory splice variant of vascular endothelial growth factor is downregulated in renal cell carcinoma. Cancer Res 62: 4123–4131

    PubMed  CAS  Google Scholar 

  47. Ferrara N, Henzel WJ (1989) Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 161: 851–858

    PubMed  CAS  Google Scholar 

  48. Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N (1992) Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 267: 26031–26037

    PubMed  CAS  Google Scholar 

  49. Muller YA, Li B, Christinger HW, Wells JA, Cunningham BC, de Vos AM (1997) Vascular endothelial growth factor: Crystal structure and functional mapping of the kinase domain receptor binding site. Proc Natl Acad Sci USA 94: 7192–7197

    PubMed  ADS  CAS  Google Scholar 

  50. Park JE, Keller G-A, Ferrara N (1993) The vascular endothelial growth factor isoforms (VEGF): Differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 4: 1317–1326

    PubMed  CAS  Google Scholar 

  51. Keyt BA, Berleau LT, Nguyen HV, Chen H, Heinsohn H, Vandlen R, Ferrara N (1996) The carboxyl-terminal domain (111–165) of vascular endothelial growth factor is critical for its mitogenic potency. J Biol Chem 271: 7788–7795

    PubMed  CAS  Google Scholar 

  52. Grunstein J, Masbad JJ, Hickley R, Giordano F, Johnson RS (2000) Isoforms of vascular endothelial growth factor act in a coordinated fashion to recruit and expand tumor vasculature. Mol Cell Biol 20: 7282–7291

    PubMed  CAS  Google Scholar 

  53. Carmeliet P, Ng Y-S, Nuyens D, Theilmeier G, Brusselmans K, Cornelissen I, Ehler E, Kakkar VV, Stalmans I, Mattot V et al. (1999) Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelila growth factor isoforms VEGF164 and VEGF188. Nat Med 5: 495–502

    PubMed  CAS  Google Scholar 

  54. Ruhrberg C, Gerhardt H, Golding MRW, Ioannidou S, Fujisawa H, Betsholtz C, Shima DT (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Gene Dev 16: 2684–2698

    PubMed  CAS  Google Scholar 

  55. Semenza G (2002) Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol 64: 993–998

    PubMed  CAS  Google Scholar 

  56. Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270: 1230–1237

    PubMed  CAS  Google Scholar 

  57. Mole DR, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Regulation of HIF by the von Hippel-Lindau tumour suppressor: implications for cellular oxygen sensing IUBMB. Life 52: 43–47

    PubMed  CAS  Google Scholar 

  58. Siemeister G, Weindel K, Mohrs K, Barleon B, Martiny Baron G, Marme D (1996) Reversion of deregulated expression of vascular endothelial growth factor in human renal carcinoma cells by von Hippel-Lindau tumor suppressor protein. Cancer Res 56: 2299–2301

    PubMed  CAS  Google Scholar 

  59. Lonergan KM, Iliopoulos O, Ohh M, Kamura T, Conaway RC, Conaway JW, Kaelin WG Jr (1998) Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol Cell Biol 18: 732–741

    PubMed  CAS  Google Scholar 

  60. Iliopoulos O, Levy AP, Jiang C, Kaelin WG Jr, Goldberg MA (1996) Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci USA 93: 10595–10599

    PubMed  ADS  CAS  Google Scholar 

  61. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271–275

    PubMed  ADS  CAS  Google Scholar 

  62. Maxwell PH, Ratcliffe PJ (2002) Oxygen sensors and angiogenesis Semin Cell. Dev Biol 13: 29–37

    CAS  Google Scholar 

  63. Frank S, Hubner G, Breier G, Longaker MT, Greenhalg DG, Werner S (1995) Regulation of VEGF expression in cultured keratinocytes Implications for normal and impaited wound healing. J Biol Chem 270: 12607–12613

    PubMed  CAS  Google Scholar 

  64. Pertovaara L, Kaipainen A, Mustonen T, Orpana A, Ferrara N, Saksela O, Alitalo K (1994) Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblastic and epithelial cells. J Biol Chem 269: 6271–6274

    PubMed  CAS  Google Scholar 

  65. Ben-Av P, Crofford LJ, Wilder RL, Hla T (1995) Induction of vascular endothelial growth factor expression in synovial fibroblasts. FEBS Lett 372: 83–87

    PubMed  CAS  Google Scholar 

  66. Cohen T, Nahari D, Cerem LW, Neufeld G, Levi BZ (1996) Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 271: 736–741

    PubMed  CAS  Google Scholar 

  67. Soh EY, Sobhi SA, Wong MG, Meng YG, Siperstein AE, Clark OH, Duh QY (1996) Thyroidstimulating hormone promotes the secretion of vascular endothelial growth factor in thyroid cancer cell lines. Surgery 120: 944–947

    PubMed  CAS  Google Scholar 

  68. Grugel S, Finkenzeller G, Weindel K, Barleon B, Marme D (1995) Both v-Ha-Ras and v-Raf stimulate expression of the vascular endothelial growth factor in NIH 3 T3 cells. J Biol Chem 270: 25915–25919

    PubMed  CAS  Google Scholar 

  69. Okada F, Rak JW, Croix BS, Lieubeau B, Kaya M, Roncari L, Shirasawa S, Sasazuki T, Kerbel RS (1998) Impact of oncogenes in tumor angiogenesis: mutant K-ras up-regulation of vascular endothelial growth factor/vascular permeability factor is necessary but not sufficient for tumorigenicity of human colorectal carcinoma cells. Proc Natl Acad Sci USA 95: 3609–3614

    PubMed  ADS  CAS  Google Scholar 

  70. Vaisman N, Gospodarowicz D, Neufeld G (1990) Characterization of the receptors for vascular endothelial growth factor. J Biol Chem 265: 19461–19466

    PubMed  CAS  Google Scholar 

  71. Jakeman LB, Winer J, Bennett GL, Altar CA, Ferrara N (1992) Binding sites for vascular endothelial growth factor are localized on endothelial cells in adult rat tissues. J Clin Invest 89: 244–253

    PubMed  CAS  Google Scholar 

  72. Shibuya M, Yamaguchi S, Yamane A, Ikeda T, Tojo A, Matsushime H, Sato M (1990) Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase (flt) closely related to the fms family. Oncogene 8: 519–527

    Google Scholar 

  73. Terman BI, Carrion ME, Kovacs E, Rasmussen BA, Eddy RL, Shows TB (1991) Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 6: 1677–1683

    PubMed  CAS  Google Scholar 

  74. de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT (1992) The fms-like tyrosine kinase a receptor for vascular endothelial growth factor. Science 255: 989–991

    PubMed  ADS  Google Scholar 

  75. Gerber HP, Condorelli F, Park J, Ferrara N (1997) Differential transcriptional regulation of the two VEGF receptor genes Flt-1 but not Flk-1/KDR is up-regulated by hypoxia. J Biol Chem 272: 23659–23667

    PubMed  CAS  Google Scholar 

  76. Park JE, Chen HH, Winer J, Houck KA, Ferrara N (1994) Placenta growth factor Potentiation of vascular endothelial growth factor bioactivity in vitro and in vivo and high affinity binding to Flt-1 but not to Flk-1/KDR J Biol Chem 269: 25646–25654

    PubMed  CAS  Google Scholar 

  77. Olofsson B, Korpelainen E, Pepper MS, Mandriota SJ, Aase K, Kumar V, Gunji Y, Jeltsch MM, Shibuya M, Alitalo K, Eriksson U (1998) Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc Natl Acad Sci USA 95: 11709–11714

    PubMed  ADS  CAS  Google Scholar 

  78. Kendall RL, Thomas KA (1993) Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA 90: 10705–10709

    PubMed  ADS  CAS  Google Scholar 

  79. Davis-Smyth T, Chen H, Park J, Presta LG, Ferrara N (1996) The second immunoglobulin-like domain of the VEGF tyrosine kinase receptor Flt-1 determines ligand binding and may initiate a signal transduction cascade. EMBO J 15: 4919–4927

    PubMed  CAS  Google Scholar 

  80. Wiesmann C, Fuh G, Christinger HW, Eigenbrot C, Wells JA, de Vos AM (1997) Crystal structure at 1.7 Å resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell 91: 695–704

    PubMed  CAS  Google Scholar 

  81. Waltenberger J, Claesson Welsh L, Siegbahn A, Shibuya M, Heldin CH (1994) Different signal transduction properties of KDR and Flt1 two receptors for vascular endothelial growth factor. J Biol Chem 269: 26988–26995

    PubMed  CAS  Google Scholar 

  82. Seetharam L, Gotoh N, Maru Y, Neufeld G, Yamaguchi S, Shibuya M (1995) A unique signal transduction from FLT tyrosine kinase a receptor for vascular endothelial growth factor VEGF. Oncogene 10: 135–147

    PubMed  CAS  Google Scholar 

  83. Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H et al. (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7: 575–583

    PubMed  CAS  Google Scholar 

  84. Gille H, Kowalski J, Yu L, Chen H, Pisabarro MT, Davis-Smyth T, Ferrara N (2000) A repressor sequence in the juxtamembrane domain of Flt-1 (VEGFR-1) constitutively inhibits VEGFdependent PI 3 kinase activation and endothelial cell migration. EMBO J 19: 4064–4073

    PubMed  CAS  Google Scholar 

  85. Landgren E, Schiller P, Cao Y, Claesson-Welsh L (1998) Placenta growth factor stimulates MAP kinase and mitogenicity but not phospholipase C-gamma and migration of endothelial cells expressing Flt 1. Oncogene 16: 359–367

    PubMed  CAS  Google Scholar 

  86. Maru Y, Yamaguchi S, Shibuya M (1998) Flt-1 a receptor for vascular endothelial growth factor has transforming and morphogenic potentials. Oncogene 16: 2585–2595

    PubMed  CAS  Google Scholar 

  87. Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376: 66–70

    PubMed  ADS  CAS  Google Scholar 

  88. Fong GH, Zhang L, Bryce DM, Peng J (1999) Increased hemangioblast commitment not vascular disorganization is the primary defect in flt-1 knock-out mice. Development 126: 3015–3025

    PubMed  CAS  Google Scholar 

  89. Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci USA 4: 9349–9354

    ADS  Google Scholar 

  90. Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D (1996) Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87: 3336–3343

    PubMed  CAS  Google Scholar 

  91. Hattori K, Heissig B, Wu Y, Dias S, Tejada R, Ferris B, Hicklin DJ, Zhu Z, Bohlen P, Witte L (2002) Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med 8: 841–849

    PubMed  CAS  Google Scholar 

  92. Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F, Nagy JA, Hooper A, Priller J, De Klerck B (2002) Revascularization of ischemic tissues by PlGF treatment and inhibition of tumor angiogenesis arthritis and atherosclerosis by anti-Flt1. Nat Med 8: 831–840

    PubMed  CAS  Google Scholar 

  93. LeCouter J, Moritz DR, Li B, Phillips GL, Liang XH, Gerber HP, Hillan KJ, Ferrara N (2003) Angiogenesis-independent endothelial protection of liver: Role of VEGFR-1. Science 299: 890–893

    PubMed  ADS  CAS  Google Scholar 

  94. Terman BI, Dougher Vermazen M, Carrion ME, Dimitrov D, Armellino DC, Gospodarowicz D, Bohlen P (1992) Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun 187: 1579–1586

    PubMed  CAS  Google Scholar 

  95. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376: 62–66

    PubMed  ADS  CAS  Google Scholar 

  96. Kabrun N, Buhring HJ, Choi K, Ullrich A, Risau W, Keller G (1997) Flk-1 expression defines a population of early embryonic hematopoietic precursors. Development 124: 2039–2048

    PubMed  CAS  Google Scholar 

  97. Fuh G, Li B, Crowley C, Cunningham B, Wells JA (1998) Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor. J Biol Chem 273: 11197–11204

    PubMed  CAS  Google Scholar 

  98. Guo D, Jia Q, Song HY, Warren RS, Donner DB (1995) Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains Association with endothelial cell proliferation. J Biol Chem 270: 6729–6733

    PubMed  CAS  Google Scholar 

  99. Takahashi T, Ueno H, Shibuya M (1999) VEGF activates protein kinase C-dependent but Rasindependent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 18: 2221–2230

    PubMed  CAS  Google Scholar 

  100. Wu LW, Mayo LD, Dunbar JD, Kessler KM, Baerwald MR, Jaffe EA, Wang D, Warren RS, Donner DB (2000) Utilization of distinct signaling pathways by receptors for vascular endothelial cell growth factor and other mitogens in the induction of endothelial cell proliferation. J Biol Chem 275: 5096–5103

    PubMed  CAS  Google Scholar 

  101. Gille H, Kowalski J, Li B, LeCouter J, Moffat B, Zioncheck T, Pelletier N, Ferrara N (2001) Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2) A reassessment using novel receptor-specific VEGF mutants. J Biol Chem 276: 3222–3230

    PubMed  CAS  Google Scholar 

  102. Adini A, Kornaga T, Firoozbakht F, Benjamin LE (2002) Placental growth factor is a survival factor for tumor endothelial cells and macrophages. Cancer Res 62: 2749–2752

    PubMed  CAS  Google Scholar 

  103. Soker S, Fidder H, Neufeld G, Klagsbrun M (1996) Characterization of novel vascular endothelial growth factor (VEGF) receptors on tumor cells that bind VEGF165 via its exon 7-encoded domain. J Biol Chem 271: 5761–5767

    PubMed  CAS  Google Scholar 

  104. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92: 735–745

    PubMed  CAS  Google Scholar 

  105. Neufeld G, Cohen T, Shraga N, Lange T, Kessler O, Herzog Y (2002) The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovas Med 12: 13–19

    CAS  Google Scholar 

  106. Fuh G, Garcia KC, de Vos AM (2000) The interaction of neuropilin-1 with vascular endothelial growth factor and its receptor flt-1. J Biol Chem 275: 26690–26695

    PubMed  CAS  Google Scholar 

  107. Kawasaki T, Kitsukawa T, Bekku Y, Matsuda Y, Sanbo M, Yagi T, Fujisawa H (1999) A requirement for neuropilin-1 in embryonic vessel formation. Development 126: 4895–4902

    PubMed  CAS  Google Scholar 

  108. Lee P, Goishi K, Davidson AJ, Mannix R, Zon L, Klagsbrun M (2002) Neuropilin-1 is required for vascular development and is a mediator of VEGF-dependent angiogenesis in zebrafish. Proc Natl Acad Sci USA 99: 10470–10475

    PubMed  ADS  CAS  Google Scholar 

  109. Yuan L, Moyon D, Pardanaud L, Breant C, Karkkainen MJ, Alitalo K, Eichmann A (2002) Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129: 4797–4806

    PubMed  CAS  Google Scholar 

  110. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C et al. (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380: 435–439

    PubMed  ADS  CAS  Google Scholar 

  111. Ferrara N, Carver Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380: 439–442

    PubMed  ADS  CAS  Google Scholar 

  112. Bellomo D, Headrick JP, Silins GU, Paterson CA, Thomas PS, Gartside M, Mould A, Cahill MM, Tonks ID, Grimmond SM et al. (2000) Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts dysfunctional coronary vasculature and impaired recovery from cardiac ischemia. Circ Res (online) 86: E29–35

    CAS  Google Scholar 

  113. Eremina V, Sood M, Haigh J, Nagy A, Lajoie G, Ferrara N, Gerber HP, Kikkawa Y, Miner JH, Quaggin SE (2003) Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest 111: 707–716

    PubMed  CAS  Google Scholar 

  114. Poole AR (ed.) (1991) Cartilage: Molecular aspects. 179–211 CRC Press, Boca Raton, FL

    Google Scholar 

  115. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N (1999) VEGF couples hypertrophic cartilage remodeling ossification and angiogenesis during endochondral bone formation. Nat Med 5: 623–628

    PubMed  CAS  Google Scholar 

  116. Haigh JJ, Gerber HP, Ferrara N, Wagner EF (2000) Conditional inactivation of VEGF-A in areas of collagen2a1 expression results in embryonic lethality in the heterozygous state. Development 127: 1445–1453

    PubMed  CAS  Google Scholar 

  117. Zelzer E, McLean W, Ng YS, Fukai N, Reginato AM, Lovejoy S, D’Amore PA, Olsen BR (2002) Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development 129: 1893–1904

    PubMed  CAS  Google Scholar 

  118. Bassett DL (1943) The changes in the vascular pattern of the ovary of the albino rat during the estrous cycle. Am J Anat 73: 251–278

    Google Scholar 

  119. Zeleznik AJ, Schuler HM, Reichert LE Jr (1981) Gonadotropin-binding sites in the rhesus monkey ovary: role of the vasculature in the selective distribution of human chorionic gonadotropin to the preovulatory follicle. Endocrinology 109: 356–362

    Article  PubMed  CAS  Google Scholar 

  120. Goede V, Schmidt T, Kimmina S, Kozian D, Augustin HG (1998) Analysis of blood vessel maturation processes during cyclic ovarian angiogenesis. Lab Invest 78: 1385–1394

    PubMed  CAS  Google Scholar 

  121. Phillips HS, Hains J, Leung DW, Ferrara N (1990) Vascular endothelial growth factor is expressed in rat corpus luteum. Endocrinology 127: 965–967

    PubMed  CAS  Google Scholar 

  122. Ravindranath N, Little-Ihrig L, Phillips HS, Ferrara N, Zeleznik AJ (1992) Vascular endothelial growth factor messenger ribonucleic acid expression in the primate ovary. Endocrinology 131: 254–260

    PubMed  CAS  Google Scholar 

  123. Ferrara N, Chen H, Davis-Smyth T, Gerber H-P, Nguyen T-N, Peers D, Chisholm V, Hillan KJ, Schwall RH (1998) Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat Med 4: 336–340

    PubMed  CAS  Google Scholar 

  124. Fraser HM, Dickson SE, Lunn SF, Wulff C, Morris KD, Carroll VA, Bicknell R (2000) Suppression of luteal angiogenesis in the primate after neutralization of vascular endothelial growth factor. Endocrinology 141: 995–1000

    PubMed  CAS  Google Scholar 

  125. Zimmermann RC, Xiao E, Husami N, Sauer MV, Lobo R, Kitajewski J, Ferin M (2001) Shortterm administration of antivascular endothelial growth factor antibody in the late follicular phase delays follicular development in the rhesus monkey. J Clin Endocrinol Metab 86: 768–772

    PubMed  CAS  Google Scholar 

  126. LeCouter J, Kowalski J, Foster J, Hass P, Zhang Z, Dillard-Telm L, Frantz G, Rangell L, DeGuzman L, Keller G-A et al. (2001) Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412: 877–884

    PubMed  ADS  CAS  Google Scholar 

  127. LeCouter J, Lin R, Ferrara N (2002) Endocrine gland-derived VEGF and the emerging hypothesis of organ-specific regulation of angiogenesis. Nat Med 8: 913–917

    PubMed  CAS  Google Scholar 

  128. Ferrara N, Frantz G, LeCouter J, Dillard-Telm L, Pham T, Draksharapu A, Giordano T, Peale F (2003) Differential expression of the angiogenic factor genes vascular endothelial growth factor (VEGF) and endocrine gland-derived VEGF in normal and polycystic human ovaries. Am J Pathol 162: 1881–1893

    PubMed  CAS  Google Scholar 

  129. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo. Nature 362: 841–844

    PubMed  ADS  CAS  Google Scholar 

  130. Gerber HP, Kowalski J, Sherman D, Eberhard DA, Ferrara N (2000) Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res 60: 6253–6258

    PubMed  CAS  Google Scholar 

  131. Tsuzuki Y, Fukumura D, Oosthuyse B, Koike C, Carmeliet P, Jain RK (2000) Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1alpha → hypoxia response element → VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res 60: 6248–6252

    PubMed  CAS  Google Scholar 

  132. Inoue M, Hager JH, Ferrara N, Gerber HP, Hanahan D (2002) VEGF-A has a critical nonredundant role in angiogenic switching and pancreatic beta cell carcinogenesis. Cancer Cell 1: 193–202

    PubMed  CAS  Google Scholar 

  133. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis Nat Cell Biol 2: 737–744

    PubMed  CAS  Google Scholar 

  134. Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, Bohlen P, Kerbel RS (2000) Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity [see comments]. J Clin Invest 105: R15–24

    PubMed  CAS  Google Scholar 

  135. Lee CG, Heijn M, di Tomaso E, Griffon-Etienne G, Ancukiewicz M, Koike C, Park KR, Ferrara N, Jain RK, Suit HD, Boucher Y (2000) Anti-Vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60: 5565–5570

    PubMed  CAS  Google Scholar 

  136. Presta LG, Chen H, O’Connor SJ, Chisholm V, Meng YG, Krummen L, Winkler M, Ferrara N (1997) Humanization of an anti-VEGF monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 57: 4593–4599

    PubMed  CAS  Google Scholar 

  137. Prewett M, Huber J, Li Y, Santiago A, O’Connor W, King K, Overholser J, Hooper A, Pytowski B, Witte L et al. (1999) Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis. Cancer Res 59: 5209–5218

    PubMed  CAS  Google Scholar 

  138. Wood JM, Bold G, Buchdunger E, Cozens R, Ferrari S, Frei J, Hofmann F, Mestan J, Mett H, O’Reilly T, Persohn E et al. (2000) PTK787/ZK 222584 a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases impairs vascular endothelial growth factorinduced responses and tumor growth after oral administration. Cancer Res 60: 2178–2189

    PubMed  CAS  Google Scholar 

  139. Wedge SR, Ogilvie DJ, Dukes M, Kendrew J, Curwen JO, Hennequin LF, Thomas AP, Stokes ES, Curry B, Richmond GH, Wadsworth PF (2000) ZD4190: an orally active inhibitor of vascular endothelial growth factor signaling with broad-spectrum antitumor efficacy. Cancer Res 60: 970–975

    PubMed  CAS  Google Scholar 

  140. Kabbinavar F, Hurwitz HI, Fehrenbacher L, Meropol NJ, Novotny WF, Lieberman G, Griffing S, Bergsland E (2003) Phase II randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 21: 60–65

    PubMed  CAS  Google Scholar 

  141. Gerber HP, Ferrara N (2003) The role of VEGF in normal and neoplastic hematopoiesis. J Molec Med 81: 20–31

    CAS  PubMed  Google Scholar 

  142. Smolich BD, Yuen HA, West KA, Giles FJ, Albitar M, Cherrington JM (2001) The antiangiogenic protein kinase inhibitors SU5416 and SU6668 inhibit the SCF receptor (c-kit) in a human myeloid leukemia cell line and in acute myeloid leukemi blasts. Blood 97: 1413–1421

    PubMed  CAS  Google Scholar 

  143. Lin B, Podar K, Gupta D, Tai YT, Li S, Weller E, Hideshima T, Lentzsch S, Davies F, Li C et al. (2002) The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 inhibits growth and migration of multiple myeloma cells in the bone marrow microenvironment. Cancer Res 62: 5019–5026

    PubMed  CAS  Google Scholar 

  144. Dias S, Hattori K, Zhu Z, Heissig B, Choy M, Lane W, Wu Y, Chadburn A, Hyjek E, Gill M et al. (2000) Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest 106: 511–521

    PubMed  CAS  Google Scholar 

  145. Garner A (1994) Vascular diseases In: A Garner, GK Klintworth (eds): Pathobiology of ocular disease, 2nd edition. Marcel Dekker, New York, 1625–1710

    Google Scholar 

  146. Patz A (1980) Studies on retinal neovascularization. Invest Ophthalmol Visual Sci 19: 1133–1138

    CAS  Google Scholar 

  147. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, Pasquale LR, Thieme H, Iwamoto MA, Park JE et al. (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders [see comments]. N Engl J Med 331: 1480–1487

    PubMed  CAS  Google Scholar 

  148. Adamis AP, Miller JW, Bernal MT, D’Amico DJ, Folkman J, Yeo TK, Yeo KT (1994) Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol 118: 445–450

    PubMed  CAS  Google Scholar 

  149. Malecaze F, Clemens S, Simorer-Pinotel V, Mathis A, Chollet P, Favard P, Bayard F, Plouet J (1994) Detection of vascular endothelial growth factor mRNA and vascular endothelial growth factor-like activity in proliferative diabetic retinopathy. Arch Ophthalmol 112: 1476–1482

    PubMed  CAS  Google Scholar 

  150. Aiello LP, Pierce EA, Foley ED, Takagi H, Chen H, Riddle L, Ferrara N, King GL, Smith LE (1995) Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci USA 92: 10457–10461

    PubMed  ADS  CAS  Google Scholar 

  151. Adamis AP, Shima DT, Tolentino MJ, Gragoudas E S Ferrara N Folkman J D’Amore P A and Miller J W (1996) Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate. Arch Ophthalmol 114: 66–71

    PubMed  CAS  Google Scholar 

  152. Lopez PF, Sippy BD, Lambert HM, Thach AB, Hinton DR (1996) Transdifferentiated retinal pigment epithelial cells are immunoreactive for vascular endothelial growth factor in surgically excised age-related macular degeneration-related choroidal neovascular membranes. Invest Ophthalmol Visual Sci 37: 855–868

    CAS  Google Scholar 

  153. Chen Y, Wiesmann C, Fuh G, Li B, Christinger HW, McKay P, de Vos AM, Lowman HB (1999) Selection and analysis of an optimized anti-VEGF antibody: crystal structure of an affinitymatured Fab in complex with antigen. J Mol Biol 293: 865–881

    PubMed  CAS  Google Scholar 

  154. Ruckman J, Green LS, Beeson J, Waugh S, Gillette WL, Henninger DD, Claesson-Welsh L, Janjic (1998) N 2’-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165) Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem 273: 20556–20567

    PubMed  CAS  Google Scholar 

  155. Krzystolik MG, Afshari MA, Adamis AP, Gaudreault J, Gragoudas ES, Michaud NA, Li W, Connolly E, O’Neill CA, Miller JW (2002) Prevention of experimental choroidal neovascularization with intravitreal anti-vascular endothelial growth factor antibody fragment. Arch Ophthalmol 120: 338–346

    PubMed  CAS  Google Scholar 

  156. Detmar M, Yeo KT, Nagy JA, Van de Water L, Brown LF, Berse B, Elicker BM, Ledbetter S, Dvorak HF (1995) Keratinocyte-derived vascular permeability factor (vascular endothelial growth factor) is a potent mitogen for dermal microvascular endothelial cells. J Invest Dermatol 105: 44–50

    PubMed  CAS  Google Scholar 

  157. Detmar M, Brown LF, Schon MP, Elicker BM, Velasco P, Richard L, Fukumura D, Monsky W, Claffey KP, Jain RK (1998) Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol 111: 1–6

    PubMed  CAS  Google Scholar 

  158. Cramer T, Yamanishi Y, Firestein G, Clausen BE, Forster I, Pawlinski R, Mackman N, Haase V, Jenisch R, Gerber HP, Ferrara N, Johnson RS (2003) HIF1a is essential for myeloid cell-mediated inflammation. Cell 112: 645–657

    PubMed  CAS  Google Scholar 

  159. Kovacs Z, Ikezaki K, Samoto K, Inamura T, Fukui M (1996) VEGF and flt Expression time kinetics in rat brain infarct. Stroke 27: 1865–1872; discussion 1872–1863

    PubMed  CAS  Google Scholar 

  160. van Bruggen N, Thibodeaux H, Palmer JT, Cairns B, Tumas D, Gerlai R, Williams S-P, van Lookeren Campagne M, Ferrara N (1999) VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J Clin Invest 104: 1613–1620

    Article  PubMed  Google Scholar 

  161. Paul R, Zhang ZG, Eliceiri BP, Jiang Q, Boccia AD, Zhang RL, Chopp M, Cheresh D (2001) A Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke. Nat Med 7: 222–227

    PubMed  CAS  Google Scholar 

  162. McLaren J, Prentice A, Charnock-Jones DS, Millican SA, Muller KH, Sharkey AM, Smith SK (1996) Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids. J Clin Invest 98: 482–489

    PubMed  CAS  Google Scholar 

  163. Shifren JL, Tseng JF, Zaloudek CJ, Ryan IP, Meng YG, Ferrara N, Jaffe RB, Taylor RN (1996) Ovarian steroid regulation of vascular endothelial growth factor in the human endometrium: Implications for angiogenesis during the menstrual cycle and in the pathogenesis of endometriosis. J Clin Endocrinol Metab 81: 3112–3118

    PubMed  CAS  Google Scholar 

  164. Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nature Rev. Cancer 2: 727–739

    PubMed  CAS  Google Scholar 

  165. Takeshita S, Zhung L, Brogi E, Kearney M, Pu L-Q, Bunting S, Ferrara N, Symes JF, Isner JM (1994) Therapeutic angiogenesis: A single intra-arterial bolus of vascular endothelial growth factor augments collateral vessel formation in a rabbit ischemic hind-limb model. J Clin Invest 93: 662–670

    PubMed  CAS  Google Scholar 

  166. Dor Y, Djonov V, Abramovitch R, Itin A, Fishman GI, Carmeliet P, Goelman G, Keshet E (2002) Conditional switching of VEGF provides new insights into adult neovascularization and proangiogenic therapy. EMBO J 21: 1939–1947

    PubMed  CAS  Google Scholar 

  167. Street J, Bao M, DeGuzman L, Bunting S, Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A et al. (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA 99: 9656–9661

    PubMed  ADS  CAS  Google Scholar 

  168. Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, Steinberg SM, Chen HX, Rosenberg SA (2003) A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349: 427–434

    PubMed  CAS  Google Scholar 

  169. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350: 2335–2342

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Ferrara, N. (2005). The role of VEGF in the regulation of physiological and pathological angiogenesis. In: Clauss, M., Breier, G. (eds) Mechanisms of Angiogenesis. Experientia Supplementum. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7311-3_15

Download citation

Publish with us

Policies and ethics