Skip to main content

Using hierarchical spatial data structures for hierarchical spatial reasoning

  • Stucturing of Space
  • Conference paper
  • First Online:
Spatial Information Theory A Theoretical Basis for GIS (COSIT 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1329))

Included in the following conference series:

Abstract

This paper gives a definition of Hierarchical Spatial Reasoning; which computes increasingly better results in a hierarchical fashion and stops the computation when a result is achieved which is ‘good enough’. This is different from standard hierarchical algorithms, which use hierarchical data structures to improve efficiency in computing the correct result. An algorithm on hierarchical spatial data structure explores all details where such exist. An hierarchical reasoning algorithm stops processing if additional detail does not effectively contribute to the result and is thus more efficient.

Hierarchical spatial data structures, especially quadtrees, are used in many implementations of GIS and have proved their efficiency. Operations on hierarchical spatial data structures are effective to compute spatial relations. They can be used for hierarchical spatial reasoning.

A formal definition of hierarchical spatial reasoning requires

  • • a coarsening function c, which produces a series of less detailed representations from a most detailed data set,

  • • a function of interest f which is applicable to these representations, and

  • • a function f which computes for each representation the quality of the result.

The computation starts with the least detailed representation and continues till a result with sufficient quality is found. This is demonstrated with a simplified example, based on a raster computation for area computation and overlap. Examples from the literature demonstrate that the same hierarchical aggregation and similar coarsening functions can be used for a wide variety of spatial reasoning tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abler, R., J.S. Adams, and P. Gould. 1971. Spatial Organization — The Geographer's View of the World. Englewood Cliffs, N.J., USA: Prentice Hall.

    Google Scholar 

  • Ballard, D.H. 1981. Strip Trees: A Hierarchical Representation for Curves. ACM Comm. 24 (5): 310–321.

    Google Scholar 

  • Bemmelen van, et al. 1993. Vector vs. Raster-based Algorithms for Cross Country Movement Planning. Proceedings of AUTO-CARTO 11, at Minneapolis, USA.

    Google Scholar 

  • Bruegger, B.P., and M.J. Egenhofer. 1989. Hierarchies over Topological Cells for Databases. Proceedings of GIS/LIS '89, at Orlando, FL.

    Google Scholar 

  • Bruegger, B.P., and A.U. Frank. 1990. Hierarchical extensions of topological data structures (P301.2). Proceedings of FIG XIX Congress, June 10–19, at Helsinki, Finland.

    Google Scholar 

  • Buttenfield, B.P. 1993. Multiple Representations — Closing Report. Buffalo: State University of New York at Buffalo.

    Google Scholar 

  • Buttenfield, B.P., and J.S. Delotto. 1989. Multiple Representations: Report on the Specialist Meeting — Initiative 3: NCGIA, Santa Barbara, CA.

    Google Scholar 

  • Car, A. 1996. Hierarchical Spatial Reasoning: Theoretical Consideration and its Application to Modeling PVayfinding. Ph.D. Thesis, GeoInfo Series Vol 10, Department of Geoinformation, Technical University Vienna.

    Google Scholar 

  • Car, A., and A.U. Frank. 1994a. General Principles of Hierarchical Spatial Reasoning — The Case of Wayfinding. Proceedings of SDH'94, at Edinburgh, Scotland.

    Google Scholar 

  • Car, A., and A.U. Frank. 1994b. Modeling a Hierarchy of Space Applied to Large Road Networks. In IGIS'94: Geographic Information Systems. Proceedings of International Workshop on Advanced Research in GIS, in Ascona, Switzerland, edited by J. Nievergelt, et al. Berlin: Springer-Verlag.

    Google Scholar 

  • Cohn, A.G. 1995. A Hierarchical Representation of Qualitative Shape Based on Connection and Convexity. In Spatial Information Theory-A Theoretical Basis for GIS, edited by A. U. Frank and W. Kuhn. Berlin: Springer-Verlag.

    Google Scholar 

  • Cohn, A.G., et al. to appear. Representing and Reasoning with Qualitative Spatial Relations about Regions, Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • De Floriani, L., and E. Puppo. 1992. A Hierarchical Triangle-Based Model for Terrain Description. In Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, edited by A. U. Frank, J. Campari and U. Formentini. Berlin: Springer-Verlag.

    Google Scholar 

  • Dutton, G. 1993. Scale change via hierarchical coarsening: cartographic properties of Quaternary Triangular Meshes. Proceedings of 16th Int. Cartographic Conference, at Koeln, Germany.

    Google Scholar 

  • Fisher, P. 1996. Propagating effects of database generalization on the viewshed. Transactions in GIS 1 (2): 69–81.

    Google Scholar 

  • Fotheringam, A.S. 1992. Encoding Spatial Information: The Evidence for Hierarchical Processing. In Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, edited by A. U. Frank, J. Campari and U. Fornnentini. Berlin: Springer-Verlag.

    Google Scholar 

  • Frank, A.U. 1987. Overlay Processing in Spatial Information Systems. Proceedings of AUTOCARTO 8, at Baltimore, MD.

    Google Scholar 

  • Fraser, J.T., ed. 1981. The Voices of Time. Second Edition. Amherst: The University of Massachusetts Press.

    Google Scholar 

  • Freksa, C. 1991. Qualitative Spatial Reasoning. In Cognitive and Linguistic Aspects of Geographic Space, edited by D. M. Mark and A. U. Frank. Dordrecht, The Netherlands: Kluwer Academic Press.

    Google Scholar 

  • Freksa, C. 1992. Using Orientation Information for Qualitative Spatial Reasoning. In Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, edited by A. U. Frank, I. Campari and U. Formentini. Heidelberg-Berlin: SpringerVerlag.

    Google Scholar 

  • Glasgow, J.I., and D. Papadias. 1992. Computational imagery. Cognitive Science 16 (3): 355–394.

    Google Scholar 

  • Golledge, R.G. 1992. Do People Understand Spatial Concepts: The Case of First-Order Primitives. In Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, edited by A. U. Frank, I. Campari and U. Formentini. Heidelberg-Berlin: Springer Verlag.

    Google Scholar 

  • Goodchild, M.F., and Y. Shiren. 1990. A Hierarchical Data Structure for Global Geographic Information Systems. Proceedings of 4th International Symposium on Spatial Data Handling, at Zurich, Switzerland.

    Google Scholar 

  • Greasley, I. 1990. Partially Ordered Sets and Lattices: Correct Models of Spatial Relations for Land Information Systems. MSc. Thesis, University of Maine, Orono.

    Google Scholar 

  • Hirtle, S.C., and J. Jonides. 1985. Evidence of Hierarchies in Cognitive Maps. Memory & Cognition 13 (3): 208–217.

    Google Scholar 

  • Hirtle, S.C. 1995. “Representational Structures for Cognitive Space: Trees, Ordered Trees and Semi-Lattices.” In Spatial Information Theory-A Theoretical Basis for GIS, ed. Frank, A.U., and Kuhn, W. 327–340. 988. Berlin-Heidelberg-New York: Springer-Verlag.

    Google Scholar 

  • Jones, C.B., and L.Q. Luo. 1994. Hierarchies and Objects in Deductive Spatial Databases. Proceedings of Sixth International Symposium on Spatial Data Handling, SDH94, at Edinburgh, Scotland.

    Google Scholar 

  • Klein, F. 1872. Comparative Considerations about Recent Geometric Investigations (in German). Erlangen, Verlag Andreas Deichert.

    Google Scholar 

  • Langacker, R.W. 1987. Foundations of Cognitive Grammar. Vol. I Theoretical Prerequisites. Stanford, CA: Stanford University Press.

    Google Scholar 

  • Mark, D.M., and J.P. Lauzon. 1985. The space efficiency of quadtrees: an empirical examination including the effects of 2-dimensional run-encoding. GeoProcessing 2: 367–383.

    Google Scholar 

  • NCGIA. 1989. The Research Plan of the National Center for Geographic Information and Analysis. IJGIS 3(2): 117–136.

    Google Scholar 

  • Noronha, V.T. 1988. A Survey of Hierarchical Partitioning Methods for vector Images. Proceedings of Third International Symposium on Spatial Data Handling, at Sydney, Australia.

    Google Scholar 

  • Puppo, E., and G. Dettori. 1995. Towards a Formal Model for Multiresolution Spatial Maps. In Advances in Spatial Databases (Proceedings SSD'95), edited by Egenhofer, M. J. and J. R. Herring. Heidelberg-Berlin: Springer-Verlag.

    Google Scholar 

  • Rigaux, P., M. Scholl, and A. Voisard. 1993. A Map Editing Kernel Implementation: Application to Multiple Scale Display. In Spatial Information Theory: Theoretical Basis for GIS, edited by A. U. Frank and I. Cammpari. HeidelbergBerlin: Springer Verlag.

    Google Scholar 

  • Samet, H. 1989a. Applications of Spatial Data Structures. Computer Graphics, Image Processing and GIS. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Samet, H. 1989b. The Design and Analysis of Spatial Data Structures. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Sinowjew, A.A. 1968. Über mehrwertige Logik. Berlin: Deutscher Verlag der Wissenschaften.

    Google Scholar 

  • Stevens, A., and P. Coupe. 1978. Distortions in judged spatial relations. Cognitive. Psychology 10: 422–437.

    Google Scholar 

  • Timpf, S. 1997. A nulti-scale data structure for cartographic objects. In Geographic Information Research: Bridging the Atlantic, edited by M. Craglia and H. Couclelis. London: Taylor & Francis, pp. 224–234

    Google Scholar 

  • Timpf, S., and A. U. Frank. 1995. A Multi-Scale DAG for Cartographic Objects. Proceedings of ACSM/ASPRS, at Charlotte, N.C.

    Google Scholar 

  • Timpf, S., G.S. Volta, D.W. Pollock, and M.J. Egenhofer. 1992. A Conceptual Model of Wayfinding Using Multiple Levels of Abstractions. In Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, edited by A. U. Frank, I. Campari and U. Formentini. Heidelberg-Berlin: Springer-Verlag.

    Google Scholar 

  • Tomlin, C.D. 1983a. Digital Cartographic Modeling Techniques in Environmental Planning. Ph.D. Thesis, Yale University.

    Google Scholar 

  • Tomlin, C.D. 1983b. A Map Algebra. Proceedings of Harvard Computer Graphics Conference, at Cambridge, Mass.

    Google Scholar 

  • Tversky, B. 1993. Cognitive Maps, Cognitive Collages, and Spatial Mental Model. In Spatial Information Theory: Theoretical Basis for GIS, edited by A. U. Frank and I. Campari. Heidelberg-Berlin: Springer-Verlag.

    Google Scholar 

  • Voisard, A., and H. Schweppe. 1994. A Multilayer Approach to the Open GIS Design Problem. Proceedings of 2nd ACM-GIS Workshop, at New York.

    Google Scholar 

  • Whigham, P. 1993. Hierarchies of Space and Time. In Spatial Information Theory: Theoretical Basis for GIS, edited by A. U. Frank and I. Campari. HeidelbergBerlin: Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stephen C. Hirtle Andrew U. Frank

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Timpf, S., Frank, A.U. (1997). Using hierarchical spatial data structures for hierarchical spatial reasoning. In: Hirtle, S.C., Frank, A.U. (eds) Spatial Information Theory A Theoretical Basis for GIS. COSIT 1997. Lecture Notes in Computer Science, vol 1329. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63623-4_43

Download citation

  • DOI: https://doi.org/10.1007/3-540-63623-4_43

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63623-6

  • Online ISBN: 978-3-540-69616-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics