Skip to main content

The bio-inorganic chemistry of tungsten

  • Chapter
  • First Online:
Metal Sites in Proteins and Models Redox Centres

Part of the book series: Structure & Bonding ((4143,volume 90))

Abstract

A steady flow of reports over the last seven years on the molecular characterization of tungsten-containing proteins from a wide range of microorganisms has drastically changed our appreciation of tungsten in redox enzymes. Biological tungsten is not an odd remnant of evolution but a widespread, versatile catalytic entity for the activation of the carbonyl group both in carbon dioxide and in a broad spectrum of aldehydes and carboxylic acids. This review starts off with an outline of the boundary conditions for the biological use of tungsten dictated by inorganic chemistry. Subsequently, the possibilities for spectroscopy on tungsten proteins are reviewed. The molecular properties of tungsten enzymes are described and are related to their physiology and their mechanism of action. Gaps in our current knowledge of the bio-inorganic chemistry of tungsten are identified, and possible directions of future research are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AOR:

aldehyde oxidoreductase

CAR:

carboxylic acid reductase

CEPT:

coupled electron-proton transfer

DMSOrd:

dimethyl sulfoxide reductase

ENDOR:

electron-nuclear double resonance

EPR:

electron paramagnetic resonance

ESEEM:

electron spin echo envelope modulation

ESR:

electron spin resonance

EXAFS:

extended X-ray absorption fine structure

FAD:

flavin adenine dinucleotide

FDH:

formate dehydrogenase

FMDH:

formylmethanofuran dehydrogenase

FMF:

formylmethanofuran

FOR:

formaldehyde oxidoreductase

GAP:

glyceraldehyde-3-phosphate

GAPOR:

glyceraldehyde-3-phosphate oxidoreductase

INEPT:

insensitive nucleus enhanced by polarization transfer

MCD:

magnetic circular dichroism

MFR:

methanofuran

NADH:

reduced nicotinamide-adenine dinucleotide

NMR:

nuclear magnetic resonance

OAT:

oxo-atom transfer

RR:

resonance Raman

RTP:

red tungsten protein

XANES:

X-ray absorption near edge structure

References

  1. Fraústo da Silva JJR, Williams RJP (1991) “The biological chemistry of the elements; The inorganic chemistry of life”. Clarendon, Oxford

    Google Scholar 

  2. Stetter KO, Fiala G, Huber G, Huber R, Segerer A (1990) FEMS Microbiol Rev 75:117

    Google Scholar 

  3. Charter RA, Tabatabai MA, Schafer JW (1995) Commun Soil Sci Plant Anal 26:3051

    CAS  Google Scholar 

  4. Andreesen, JR, Ljungdahl LG (1973) J Bacteriol 116:867

    PubMed  CAS  Google Scholar 

  5. Andreesen JR, El Ghazzawi E, Gottschalk G (1974) Arch Microbiol 96:103

    CAS  Google Scholar 

  6. Andreesen JR, Ljungdahl LG (1974) J Bacteriol 120:6

    PubMed  CAS  Google Scholar 

  7. Ljungdahl LG, Andreesen JR (1975) FEBS Lett 54:279

    PubMed  CAS  Google Scholar 

  8. Yamamoto, I, Saiki T, Liu S-M, Ljungdahl LG (1983) J Biol Chem 258:1826

    PubMed  CAS  Google Scholar 

  9. Strobl G, Feicht R, White H, Lottspeich F, Simon H (1992) Biol Chem Hoppe-Seyler 373: 123

    PubMed  CAS  Google Scholar 

  10. Johnson JL, Rajagopalan KV, Mukund S, Adams MWW (1993) J Biol Chem 268:4848

    PubMed  CAS  Google Scholar 

  11. Chan MK, Mukund S, Kletzin A, Adams MWW Rees DC (1995) Science 267:1463

    PubMed  CAS  Google Scholar 

  12. Adams MWW (1994) In: King RB (ed) Encyclopedia of inorganic chemistry. John Wiley, Chichester, p 4284

    Google Scholar 

  13. Romao MJ, Archer M, Moura I, Moura JJG, LeGall J, Engh R, Schneider M, Hof P, Huber R (1995) Science 270:1170

    PubMed  CAS  Google Scholar 

  14. Schindelin H, Kisker C, Hilton J, Rajagopalan KV, Rees DC (1996) Science 272:1615

    PubMed  CAS  Google Scholar 

  15. Huber R, Hof P, Duarte RO, Moura JJG, Moura I, Liu M-Y, LeGall J, Hille R, Archer M, Romao MJ (1996) Proc Natl Acad Sci 93:8846

    PubMed  CAS  Google Scholar 

  16. Kletzin A, Adams MWW (1996) FEMS Microbiol Rev 18:5

    PubMed  CAS  Google Scholar 

  17. Pourbaix M (ed) (1963) Atlas d'equilibres electrochimiques à 25°C. Gauthier-Villars, Paris

    Google Scholar 

  18. Kim J, Rees DC (1992) Science 257:1677

    PubMed  CAS  Google Scholar 

  19. Smith BE, Eady RR (1992) Eur J Biochem 205:1

    PubMed  CAS  Google Scholar 

  20. Hales BJ, Case EE (1987) J Biol Chem 262:16205

    PubMed  CAS  Google Scholar 

  21. Kajii Y, Kobayashi M, Takahashi T, Onodera K (1994) Biosci Biotechnol Biochem 58:1179

    CAS  Google Scholar 

  22. Golan U, Schneider K, Müller A, Schüddekopf K, Klipp W (1993) Eur J Biochem 215:25

    Google Scholar 

  23. Coucouvanis D, Mosier PE, Demadis KD, Patton S, Malinak SM, Kim CG, Tyson MA (1993) J Am Chem Soc 115: 12193; Pickett CJ (1996) J Biol Inorg Chem 1:601

    CAS  Google Scholar 

  24. Howes BD, Bray RC, Richards RL, Turner NA, Bennett B, Lowe DJ (1996) Biochemistry 35:1432

    PubMed  CAS  Google Scholar 

  25. Latimer WM (1952) The oxidation states of the elements and their potentials in aqueous solution, 2nd ed. Prentice-Hall, New York

    Google Scholar 

  26. Bard AJ, Parsons R, Jordan J (1985) Standard potentials in aqueous solutions. Dekker, New York

    Google Scholar 

  27. McCleverty JA (1994) In: King RB (ed) Encyclopedia of inorganic chemistry. John Wiley, Chichester, p 4240

    Google Scholar 

  28. Wulfsberg G (1991) Principles of Descriptive Inorganic Chemistry. University Science Books, Mill Valley, CA

    Google Scholar 

  29. Zellner G, Winter J (1987) FEMS Microbiol Lett 40:81

    CAS  Google Scholar 

  30. Greenwood NN, Earnshaw A (1984) Chemistry of the elements. Pergamon Press, Oxford

    Google Scholar 

  31. Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry, 5th ed. John Wiley, New York

    Google Scholar 

  32. Cruywagen JJ, van der Merwe IFJ (1987) J Chem Soc (Dalton Trans) 1701

    Google Scholar 

  33. Silver S, Walderhaug M (1992) Microbiol Rev 56:195

    PubMed  CAS  Google Scholar 

  34. Hider RC (1984) Struct Bonding 58:25

    CAS  Google Scholar 

  35. Crichton RR (1991) The inorganic chemistry of iron metabolism. Ellis Horwood, Chichester

    Google Scholar 

  36. Rech S, Wolin C, Gunsalus RP (1996) J Biol Chem 271:2557

    PubMed  CAS  Google Scholar 

  37. Luque F, Mitchenall LA, Chapman M, Christine R, Pau RN (1993) Mol Microbiol 7:447

    PubMed  CAS  Google Scholar 

  38. Wang G, Angermüller S, Klipp W (1993) J Bacteriol 175:3031

    PubMed  CAS  Google Scholar 

  39. Cornish AS, Page WJ (1995) Biometals 8:332

    CAS  Google Scholar 

  40. Heuwinkel H, Kirkby EA, Le Bot J, Marschner H (1992) J Plant Nutr 15: 549

    CAS  Google Scholar 

  41. Leonhardt U, Andreesen JR (1977) Arch Microbiol 115:277

    PubMed  CAS  Google Scholar 

  42. Pienkos PT, Brill WJ (1981) J Bacteriol 145:743

    PubMed  CAS  Google Scholar 

  43. Lowe SE, Jain MK, Zeikus JG (1993) Microbiol Rev 57:451

    PubMed  CAS  Google Scholar 

  44. Brown SH, Kelly RM (1989) Appl Environ Microbiol 55:2086

    PubMed  Google Scholar 

  45. Malik B, Su W-W, Wald HL, Blumentals II, Kelly, RM (1989) Biotechnol Bioeng 34:1050

    CAS  Google Scholar 

  46. Fiala G, Stetter KO (1986) Arch Microbiol 145:56

    CAS  Google Scholar 

  47. White H, Simon H (1992) Arch Microbiol 158:81

    PubMed  CAS  Google Scholar 

  48. Bryant FO, Adams MWW (1989) J Biol Chem 264:5070

    PubMed  CAS  Google Scholar 

  49. Raven N, Ladwa N, Cossar D, Sharp R (1992) Appl Micorbiol Biotechnol 38:263

    CAS  Google Scholar 

  50. Schicho RN, Snowden LJ, Mukund S, Park J-B, Adams MWW, Kelly RM (1993) Arch Microbiol 159:380

    CAS  Google Scholar 

  51. Mukund S, Adams MWW (1996) J Bacteriol 178:163

    PubMed  CAS  Google Scholar 

  52. Wagner R, Andreesen JR (1987) Arch Microbiol 115:277

    Google Scholar 

  53. Hensgens CMH, Nienhuis-Kuiper ME, Hansen TA (1994) Arch Microbiol 162: 143

    CAS  Google Scholar 

  54. Hart LI, McGartoll MA, Chapman HR, Bray RC (1970) Biochem J 116: 851

    PubMed  CAS  Google Scholar 

  55. Cardenas J, Mortenson LE (1974) Anal Biochem 60:372

    PubMed  CAS  Google Scholar 

  56. Olivares JA (1988) Methods Enzymol 158:205

    PubMed  CAS  Google Scholar 

  57. Versieck J (1988) Methods Enzymol 158:267

    PubMed  CAS  Google Scholar 

  58. Pierik, AJ, Hagen WR, Redeker JS, Wolbert RBG, Boersma M, Verhagen MFJM, Grande HJ, Veeger C, Mutsaers PHA, Sands RH, Dunham WR (1992) Eur J Biochem 209:63

    PubMed  CAS  Google Scholar 

  59. Dan D, Re J (1992) Talanta 39:119

    CAS  Google Scholar 

  60. Capitan F, Sanchez-Palencia G, Navalon A, Capitan-Vallvey LF, Vilchez JL (1992) Anal Chim Acta 259:345

    CAS  Google Scholar 

  61. Ensafi AA (1992) Anal Lett 25:2339

    CAS  Google Scholar 

  62. Kon H, Sharpless, NE (1966) J Phys Chem 70:105

    CAS  Google Scholar 

  63. Hanson GR, Brunette AA, McDonell AC, Murray KS, Wedd AG (1981) J Am Chem Soc 103:1953

    CAS  Google Scholar 

  64. Hanson GR, Wilson GL, Bailey TD, Pilbrow JR, Wedd AG(1987) J Am Chem Soc 109:2609

    CAS  Google Scholar 

  65. Schmitz RA, Albracht SPJ, Thauer RK (1992) FEBS Lett 309:78

    PubMed  CAS  Google Scholar 

  66. Arendsen, AF, de Vocht, M, Bulsink, YBM, Hagen WR (1996) J Biol Inorg Chem 1: 292

    CAS  Google Scholar 

  67. Deaton JC, Solomon EI, Watt GD, Wetherbee PJ, Durfor CN (1987) Biochem Biophys Res Commun 149:424

    PubMed  CAS  Google Scholar 

  68. Huber C, Caldeira J, Jongejan JA, Simon H (1994) Arch Microbiol 162:303

    CAS  Google Scholar 

  69. Hensgens CMH, Hagen WR, Hansen TA (1995) J. Bacteriol 177:6195

    PubMed  CAS  Google Scholar 

  70. Johnson JL, Rajagopalan KV (1976) J Biol Chem 251:5505

    PubMed  CAS  Google Scholar 

  71. Lee HC, Gard JK, Brown TL, Oldfield E (1985) J Am Chem Soc 107:4087

    CAS  Google Scholar 

  72. Baltzer L (1987) J Am Chem Soc 109: 3479

    CAS  Google Scholar 

  73. Chung J, Lee HC, Oldfield E (1990) J Magn Reson 90:148

    CAS  Google Scholar 

  74. Pierik AJ, Hagen, WR, Dunham WR, Sands RH (1992) Eur J Biochem 206:705

    PubMed  CAS  Google Scholar 

  75. Christina H, McFarlane E, McFarlane W Rycroft DS (1976) J Chem Soc (Dalton Trans) 1616

    Google Scholar 

  76. Brevard C, Schimpf R (1982) J Magn Reson 47:528

    CAS  Google Scholar 

  77. Benn R, Brennecke H, Heck J, Rufinska A (1987) Inorg Chem 26:2826

    CAS  Google Scholar 

  78. Benn R, Rufinska A (1988) Magn Reson Chem 26:895

    CAS  Google Scholar 

  79. Benn R, Rufinska A (1989) J Organomet Chem 376:359

    CAS  Google Scholar 

  80. Acerete R, Hammer CF, Baker, LCW (1979) J Am Chem Soc 101:267

    CAS  Google Scholar 

  81. Kraatz H-B, Aramini JM, Gao X, Boorman PM, Vogel HJ (1992) Inorg Chem 32:3976

    Google Scholar 

  82. Chapelle S, Verchere JF (1995) Carbohydr Res 266:161

    CAS  Google Scholar 

  83. Hlaibi M, Benaissa M, Busatto C, Verchere JF, Chapelle S (1995) Carbohydr Res 278:227

    CAS  Google Scholar 

  84. Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy. Chapman and Hall, London

    Google Scholar 

  85. Cramer SP, Liu C-L, Mortenson LE, Spence JT, Liu S-M, Yamamoto I, Ljungdahl LG (1985) J Inorg Biochem 23:119

    PubMed  CAS  Google Scholar 

  86. George GN, Prince RC, Mukund S, Adams MWW (1992) J Am Chem Soc 114:3521

    CAS  Google Scholar 

  87. Mukund S, Adams MWW (1990) J Biol Chem 265:11508

    PubMed  CAS  Google Scholar 

  88. Holm RH, Simhon ED (1985) In: Spiro TG (ed) Metal ions in biology Vol 7 Molybdenum enzymes, Ch 1. John Wiley, New York

    Google Scholar 

  89. Holm RH (1992) In: Cammack R, Sykes AG (eds) Advances in inorganic chemistry Vol 38 Iron sulfur proteins, Ch 1. Acad Press, San Diego

    Google Scholar 

  90. Durfor CN, Wetherbee PJ, Deaton JC, Solomon EI (1983) Biochem Biophys Res Commun 115:61

    PubMed  CAS  Google Scholar 

  91. Mukund S, Koehler BP, Roy R, Johnson MK, Adams MWW (1995) J. Inorg Biochem 59:540

    Google Scholar 

  92. Koehler BP, Mukund S, Conover RC, Crouse BR, Fu W, Adams MWW, Johnson MK (1995) J Inorg Biochem 59:560

    Google Scholar 

  93. Friedebold J, Bowien B (1993) J Bacteriol 175:4719

    PubMed  CAS  Google Scholar 

  94. Grether-Beck S, Igloi GL, Pust S, Schilz E, Decker, K, Brandsch R (1994) Mol Microbiol 13:929

    PubMed  CAS  Google Scholar 

  95. Chauret C, Knowles R (1991) Can J Microbiol 37:744

    CAS  Google Scholar 

  96. White H, Strobl G, Feicht R, Simon H (1989) Eur J Biochem 184:89

    PubMed  CAS  Google Scholar 

  97. Ljungdahl LG (1986) Ann Rev Microbiol 40:4l5

    Google Scholar 

  98. Rothery RA, Grant JLS, Johnson JL, Rajagopalan KV, Weiner JH (1995) J Bacteriol 177:2057

    PubMed  CAS  Google Scholar 

  99. Le Bloas P, Guilbert N, Loubiere P, Lindley ND (1993) J Gen Microbiol 139:1861

    Google Scholar 

  100. Wu WM, Hickey RF, Jain MK, Zeikus JG (1993) Arch Microbiol 159:57

    CAS  Google Scholar 

  101. Bertram PA, Schmitz RA, Linder D, Thauer RK (1994) Arch Microbiol 161:220; Hochheimer A, Schmitz RA, Thauer RK, Hedderich R (1995) Eur J Biochem 234:910

    PubMed  CAS  Google Scholar 

  102. Schmitz RA, Richter M, Linder D, Thauer RK (1992) Eur J Biochem 207:559; Schmitz RA, Albracht SPJ, Thauer RK (1992) Eur J Biochem 209: 1013; Schmitz RA, Bertram PA, Thauer RK (1994) Arch Microbiol 161:528

    PubMed  CAS  Google Scholar 

  103. Jones JB, Stadtman TC (1981) J Biol Chem 256:656

    PubMed  CAS  Google Scholar 

  104. Bertram PA, Karrasch M, Schmitz RA, Böcher R, Albracht SPJ, Thauer RK (1994) Eur J Biochem 220:477

    PubMed  CAS  Google Scholar 

  105. Girio FM, Marcos JC, Amaral-Collaco MT (1992) FEMS Micriobiol Lett 97:161

    CAS  Google Scholar 

  106. Karzanov VV, Correa CM, Bogatsky YG, Netrusov AI (1991) FEMS Microbiol Lett 81:95

    CAS  Google Scholar 

  107. Chauret C, Barraquio WL, Knowles R (1992) Can J Microbiol 38:1042

    CAS  Google Scholar 

  108. Rosner BM, Schink B (1995) J Bacteriol 177:5767

    PubMed  CAS  Google Scholar 

  109. Mukund S, Adams MWW (1995) J Biol Chem 270:8389

    PubMed  CAS  Google Scholar 

  110. Mukund S, Adams MWW (1993) J Biol Chem 268:13592

    PubMed  CAS  Google Scholar 

  111. Juszczak A, Aono S, Adams MWW (1991) J Biol Chem 266:13834

    PubMed  CAS  Google Scholar 

  112. Sajitz P, Klemme JH, Koch HG, Molitor M (1993) Zeitschr Naturforch C Biosci 48:812

    CAS  Google Scholar 

  113. Fetzner S, Lingens F (1993) Biol Chem Hoppe-Seyler 374:363

    PubMed  CAS  Google Scholar 

  114. Shearer G, Schneider JD, Kohl DH (1991) J Gen Microbiol 137:1179

    CAS  Google Scholar 

  115. Heider J, Ma K, Adams MWW (1995) J Bacteriol 177:4757

    PubMed  CAS  Google Scholar 

  116. Timkovich R, Burkhalter RS, Xavier AV, Chen L, LeGall J (1994) Bioorg Chem 22:284

    CAS  Google Scholar 

  117. Raina R, Bageshwar UK, Das HK (1992) FEMS Microbiol Lett 98:169

    CAS  Google Scholar 

  118. Huber C, Skopan H, Feicht R, White H, Simon H (1995) Arch Microbiol 164:110

    CAS  Google Scholar 

  119. Mukund S, Adams MWW (1991) J Biol Chem 266:14208

    PubMed  CAS  Google Scholar 

  120. Kengen SWM, Stams AJM (1994) Arch Microbiol 161:168

    CAS  Google Scholar 

  121. Kengen SWM, de Bok FAM, van Loo N-D, Dijkema C, Stams AJM, de Vos WM (1994) J Biol Chem 269:17537

    PubMed  CAS  Google Scholar 

  122. Schäfer T, Xavier KB, Santos H, Schönheit P (1994) FEMS Microbiol Lett 121:107

    Google Scholar 

  123. White H, Feicht R, Huber C, Lottspeich F, Simon H (1991) Biol Chem Hoppe-Seyler 372:999; White H, Huber C, Feicht R, Simon H (1993) Arch Microbiol 159:244

    PubMed  CAS  Google Scholar 

  124. Albracht SPJ (1994) Biochim Biophys Acta 1188:167

    PubMed  Google Scholar 

  125. Burgmayer SJN, Stiefel EI (1985) J Chem Educ 62:943

    CAS  Google Scholar 

  126. Young CG, Wedd AG (1994) In: King RB (ed) Encyclopedia of inorganic chemistry. John Wiley, Chichester, p 2330

    Google Scholar 

  127. Rajagopalan KV, Johnson JL (1992) J Biol Chem 267:10199

    PubMed  CAS  Google Scholar 

  128. Kletzin A, Mukund S, Kelley-Crouse TL, Chan MK, Rees DC, Adams MWW (1995) J Bacteriol 177:4817

    PubMed  CAS  Google Scholar 

  129. Hille R (1996) J Biol Inorg Chem l:397

    Google Scholar 

  130. Arendsen, AF, de Vocht ML, Bulsink YBM, Hagen WR (1995) J Inorg Biochem 59:542

    Google Scholar 

  131. Hille R, Massey V (1982) J Biol Chem 257:8898

    PubMed  CAS  Google Scholar 

  132. Garner CD, Armstrong EM, Ashcroft MJ, Austerberry MS, Birks JH, Collison D, Goodwin AJ, Larsen L, Rowe DJ, Russell JR (1993) In: Stiefel EI, Coucouvanis D, Newton WE (eds) Molybdenum Enzymes, Cofactors, and Model Systems. ACS Symposium Series 535, Ch 7, Washington DC

    Google Scholar 

  133. Morpeth FF, Bray RC (1984) Biochemistry 23:1332

    PubMed  CAS  Google Scholar 

  134. Coyle CL, Harmer MA, George GN, Daage M, Stiefel EI (1990) Inorg Chem 29:14

    CAS  Google Scholar 

  135. Murray HH, Wei L, Sherman SE, Greaney MA, Eriksen KA, Cartensen B, Halbert TR, Stiefel EI (1995) Inorg Chem 34:841

    CAS  Google Scholar 

  136. de Vries S (1996) In: Feiters MC, Hagen WR, Veeger C (eds) Proceedings 3rd European conference on bio-inorganic chemistry. NSR Center, Nijmegen, Abstract GI

    Google Scholar 

  137. Takahashi J, Ando S, Watanabe M, Yamamoto N, Fujita H (1993) Animal Sci Technol 64:637

    CAS  Google Scholar 

  138. Haiduc I, Silvestru C (1990) Coor Chem Rev 99:253

    CAS  Google Scholar 

  139. Thompson WJ, Tan BH, Strada SJ (1991) J Biol Chem 266:17011

    PubMed  CAS  Google Scholar 

  140. Cholewa M, Legge GJF, Weigold H, Holan G, Birch CJ (1994) Life Sci 54:1607

    PubMed  CAS  Google Scholar 

  141. Bevan AP, Drake PG, Yale JF, Shaver A, Posner BI (1995) Mol Cell Biochem 153:49

    PubMed  CAS  Google Scholar 

  142. Haque SJ, Flati V, Deb A, Williams BRG (1995) J Biol Chem 270:25709

    PubMed  CAS  Google Scholar 

  143. Eschnauer HR, Stoeppler M (1992) In: Stoeppler M (ed) Hazardous metals in the environment. Elsevier, Amsterdam, p 49

    Google Scholar 

  144. Kisker C, Schindelin H, Rees DC (1997) Annu Rev Biochem 66:233

    PubMed  CAS  Google Scholar 

  145. Koehler BP, Mukund S, Conover RC, Dhawan IK, Roy R, Adams MWW, Johnson MK (1996) J Am Chem Soc 118:12391

    CAS  Google Scholar 

  146. Das SK, Biswas D, Maiti R, Sarkar S (1996) J Am Chem Soc 118:1387

    CAS  Google Scholar 

  147. Vorholt JA, Vaupel M, Thauer RK (1997) Mol Microbiol 23:1033

    PubMed  CAS  Google Scholar 

  148. Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD (1997) Science 275:1305

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. R. Hagen .

Editor information

H. A. O. Hill P. J. Sadler A. J. Thomson

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Verlag

About this chapter

Cite this chapter

Hagen, W.R., Arendsen, A.F. (1998). The bio-inorganic chemistry of tungsten. In: Hill, H.A.O., Sadler, P.J., Thomson, A.J. (eds) Metal Sites in Proteins and Models Redox Centres. Structure & Bonding, vol 90. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62888-6_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-62888-6_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62888-0

  • Online ISBN: 978-3-540-69038-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics