Skip to main content

Advances in Zinc Enzyme Models by Small, Mononuclear Zinc (II) Complexes

  • Chapter
  • First Online:
Metal Sites in Proteins and Models

Part of the book series: Structure and Bonding ((4143,volume 89))

Abstract

Recent developments in zinc enzyme models, in particular for carbonic anhydrase (CA), alkaline phosphatase (AP), and alcohol dehydrogenase (ADH) are presented. Although these models are simple zinc(II) complexes, they have helped to disclose the hitherto unsettled intrinsic properties of zinc (II)-dependent enzyme functions. The discussion emphasizes how H2O is activated by zinc(II) for the nucleophilic attack on electrophilic substrates (e.g., CO2 in CA, phosphomonoesters in AP) and also how alcohols are activated by zinc (II) for hydride transfer in ADH or nucleophilic attack on phosphates in AP. Future modeling should take into consideration the results from recent developments in enzyme functions by protein engineering. For instance, design of secondary zinc(II) ligands for the fine-tuning of zinc(II) properties will be needed to explore and understand the reaction specificity of zinc enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kimura E, Koike T (1996) In: Comprehensive Supramolecular Chemistry, Vol 10:429, Pergamon

    Google Scholar 

  2. Kimura E (1994) Prog Inorg Chem 41:443

    Google Scholar 

  3. Kimura E, Shionoya M (1994) in Transition Metals in Supramolecular Chemistry, 245, John Wiley

    Google Scholar 

  4. Kimura E, Koike T (1991) Comments Inorg Chem 11:285

    Google Scholar 

  5. Kimura E, Shiota T, Koike T, Shiro M, Kodama M (1990) J Am Chem Soc 112:5805

    Article  Google Scholar 

  6. Koike T, Kimura E (1991) J Am Chem Soc 113:8935

    Article  Google Scholar 

  7. Zhang X, von Eldic R, Koike T, Kimura E (1993) Inorg Chem 32:5749

    Article  Google Scholar 

  8. Kimura E, Koike T, Shionoya M, Shiro M (1992) Chem Lett 787

    Google Scholar 

  9. Koike T, Kimura E, Nakamura I, Hashimoto Y, Shiro M (1992) J Am Chem Soc 114:7338

    Article  Google Scholar 

  10. Kimura E, Nakamura I, Koike T, Shionoya M, Kodama Y, Ikeda T, Shiro M (1994) J Am Chem Soc 116:4764

    Article  Google Scholar 

  11. Koike T, Takamura M, Kimura E (1994) J Am Chem Soc 116:8443

    Article  Google Scholar 

  12. Koike T, Kajitani S, Nakamura I, Kimura E, Shiro M (1995) J Am Chem Soc 117:1210

    Article  Google Scholar 

  13. Kimura E, Kodama Y, Koike T, Shiro M (1995) J Am Chem Soc 117:8304

    Article  Google Scholar 

  14. Zhang X, von Eldik R (1995) Inorg Chem 34:5606

    Article  Google Scholar 

  15. Read RJ, James MN (1981) J Am Chem Soc 103:6947

    Article  Google Scholar 

  16. Brown RS, Curtis NJ, Huguet J (1981) J Am Chem Soc 103:6953

    Article  Google Scholar 

  17. Brown RS, Salmon D, Curtis NJ, Kusuma S (1982) J Am Chem Soc 104:3188

    Article  Google Scholar 

  18. Slebocka-Tilk H, Cocho JL, Frakman Z, Brown RS (1984) J Am Chem Soc 106:2421

    Article  Google Scholar 

  19. Alsfasser R, Trofimenko S, Looney A, Parkin G, Vahrenkamp H (1991) Inorg Chem 30:4098

    Article  Google Scholar 

  20. Looney A, Han R, McNeill K, Parkin G (1993) J Am Chem Soc 115:4690

    Article  Google Scholar 

  21. Looney A, Parkin G (1994) Inorg Chem 33:1234

    Article  Google Scholar 

  22. Kitajima N, Hikichi S, Tanaka M, Moro-oka Y (1993) J Am Chem Soc 115:5496

    Article  Google Scholar 

  23. Woolley P (1975) Nature, 258:677

    PubMed  Google Scholar 

  24. Botrè F, Gros G, Storey BT (1991) Carbonic anhydrase. VCH, Weinheim

    Google Scholar 

  25. Khalifah RG (1971) J Biol Chem 246:2561

    PubMed  Google Scholar 

  26. Nair SK, Calderone TL, Christianson DW Fierker CA (1991) J Biol Chem 266:17320

    PubMed  Google Scholar 

  27. Palmer DA, von Erdic R (1983) Chem Rev 83:651

    Article  Google Scholar 

  28. Mahal G, von Erdic R (1985) Inorg Chem 24:4165

    Article  Google Scholar 

  29. Ruf M, Weis K, Vahrenkamp H (1994) J Chem Soc Chem Commun 135

    Google Scholar 

  30. Murthy NN, Karlin KD (1993) J Chem Soc Chem Comm 1236

    Google Scholar 

  31. Kimblin C, Allen WE, Parkin G (1995) J Chem Soc Chem Commun 1813

    Google Scholar 

  32. Eriksson AE, Kylsten P, Jones TA, Lilijas A (1988) Proteins, 4:283

    Article  PubMed  Google Scholar 

  33. Chen RC, Kernohan JC (1967) J Biol Chem 242:5813

    PubMed  Google Scholar 

  34. Ferrer S, Borrás J, Miratvilles C, Fuertes A (1989) Inorg Chem 28:160

    Article  Google Scholar 

  35. Koike T, Watanabe T, Kimura E, Shiro M (in press) J Am Chem Soc

    Google Scholar 

  36. Taylor PW King RW Burgen ASV (1970) Biochemistry, 9:2638

    Article  PubMed  Google Scholar 

  37. Eklund H, Jones A, Schneider G (1986) Active site in alcohol dehydrogenase. In: Bertini I, Luchinat C, Maret W Zeppezauer M (eds) Zinc enzymes. Birkhäuser, Boston p 377

    Google Scholar 

  38. Pettersson G (1986) Ionization properties of zinc-bound ligand alcohol dehydrogenase. ibid, In

    Google Scholar 

  39. Kimura E, Shionoya M, Hoshino A, Ikeda T, Yamada Y (1992) J Am Chem Soc 114:10134

    Article  Google Scholar 

  40. Shoner SC, Humphreys KJ, Kovacs JA (1995) Inorg Chem 34:5933

    Article  Google Scholar 

  41. Kim EE, Wyckoff HW (1991) J Mol Biol 218:449

    Article  PubMed  Google Scholar 

  42. Sigman DS, Jorgensen CT (1972) J Am Chem Soc 94:1724

    Article  PubMed  Google Scholar 

  43. Dugas H (1989) Bioorganic chemistry. Springer, Berlin Heiderberg New York, p 196

    Google Scholar 

  44. Cruickshank P, Sheehan JC (1963) J Am Chem Soc 86:2070

    Article  Google Scholar 

  45. Vandersteen AM, Janda KD (1996) J Am Chem Soc 118:8787

    Article  Google Scholar 

  46. Zeppezauer M (1986) The metal environment of alcohol dehydrogenase: aspects of chemical speciation and catalytic efficiency in biological catalyst. In: Bertini I, Luchinat C, Maret W Zeppezauer M (eds) Zinc enzymes. Birkhäuser, Boston, p 416

    Google Scholar 

  47. Fujioka H, Koike T, Yamada N, Kimura E (1996) Heterocycles, 42:775

    Google Scholar 

  48. Kady IO, Tan B, Ho Z, Scarborough T (1995) J Chem Soc Chem Commun 1137

    Google Scholar 

  49. Morrow JR, Aures K, Epstein D (1995) J Chem Soc Chem Commun 2431

    Google Scholar 

  50. Young MJ, Wahnon D, Hynes RC, Chin J (1995) J Chem Soc Chem Commun 9441

    Google Scholar 

  51. Kiefer LL, Ippolito JA, Fierke CA, Christianson DW (1993) J Am Chem Soc 115:12581

    Article  Google Scholar 

  52. Krebs JK, Fierke CA (1993) J Biol Chem 268:948

    PubMed  Google Scholar 

  53. Krebs JK, Ippolito JA, Christianson DW, Fierke CA (1993) J Biol Chem 268:27458

    PubMed  Google Scholar 

  54. Kiefer LL, Paterno SA, Fierke CA (1995) J Am Chem Soc 117:6831

    Article  Google Scholar 

  55. Xu X, Qin X, Kantrowitz ER (1994) Biochemistry, 33:2279

    Article  PubMed  Google Scholar 

  56. Xu X, Kantrowitz ER (1992) J Biol Chem 267:16244

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. A. O. Hill P. J. Sadler A. J. Thomson

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Verlag

About this chapter

Cite this chapter

Kimura, E., Koike, T., Shionoya, M. (1997). Advances in Zinc Enzyme Models by Small, Mononuclear Zinc (II) Complexes. In: Hill, H.A.O., Sadler, P.J., Thomson, A.J. (eds) Metal Sites in Proteins and Models. Structure and Bonding, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62874-6_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-62874-6_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62874-3

  • Online ISBN: 978-3-540-69037-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics