Skip to main content

An artificial life model for predicting the tertiary structure of unknown proteins that emulates the folding process

  • 7. Biocomputing
  • Conference paper
  • First Online:
Advances in Artificial Life (ECAL 1995)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 929))

Included in the following conference series:

Abstract

We present an “ab initio” method that tries to determine the tertiary structure of unknown proteins by modelling the folding process without using potentials extracted from known protein structures. We have been able to obtain appropriate matrices of folding potentials, i.e. ‘forces’ able to drive the folding process to produce correct tertiary structures, using a genetic algorithm. Some initial simulations that try to simulate the folding process of a fragment of the crambin that results in an alpha-helix, have yielded good results. We discuss some general implications of an Artificial Life approach to protein folding which makes an attempt at simulating the actual folding process rather than just trying to predict its final result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anfinsen, C. B. (1973). Principles that Govern the Folding of Protein Chains. Science, 181, 223–230.

    PubMed  Google Scholar 

  • Bairoch, A. & Boeckmann, B. (1992). The SWISS-PROT Protein Sequence Data Bank. Nucleic Acids Res., 20, 2019–2022.

    Google Scholar 

  • Baker, D. & Agard, D. A. (1994). Kinetics versus Thermodynamics in Protein Folding. Biochemistry, 33, 7505–7509.

    Google Scholar 

  • Bartel, D. P. & Szostak, J. W. (1993). Isolation of new ribozymes from a large pool of random sequences. Science, 261, 1411–1418.

    Google Scholar 

  • Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Jr, Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., & Tasumi, M. (1977). The protein data bank: a computer-based archival file for macromolecular structures. J. Mol. Biol., 112, 535–542.

    PubMed  Google Scholar 

  • Bryant, S. H. & Lawrence, C. E. (1993). An Empirical Energy Function for Threading Protein Sequence through Folding Motif. Proteins, 16, 92–112.

    Google Scholar 

  • Casari, G. & Sippl, M. J. (1992). Structure-Derived Hydrophobic Potential. Hydrophobic Potential Derived from X-Ray Structures of Globular Proteins Is Able to Identify Native Folds. J. Mol. Biol., 224, 725–732.

    Google Scholar 

  • Creighton, T. E. (1978). Experimental Studies of Protein Folding and Unfolding. Prog. Biophys. Mol. Biol., 33, 231–297.

    Google Scholar 

  • Creighton, T. E. (1992). The Disulfide Folding Pathway of BPTI. Science, 256, 111–112.

    Google Scholar 

  • Creighton, T. E. (1993). Proteins: Structures and Molecular Properties. W. H. Freeman and Company, New York, NY.

    Google Scholar 

  • Dandekar, T. & Argos, P. (1994). Folding the Main Chain of Small Proteins with the Genetic Algorithm. J. Mol. Biol., 236, 844–861.

    Google Scholar 

  • Farber, G. K. & Petsko, G. A. (1990). The Evolution of α/β Barrel Enzymes. Trends Biochem. Sci., 15, 228–234.

    PubMed  Google Scholar 

  • Fariselli, P., Compiani, M. & Casadio, R. (1993). Predicting Secondary Structures of Membrane Proteins with Neural Networks. Eur. Biophys, J., 22, 41–51.

    Google Scholar 

  • Gierasch, L. M. & King, J. (1990). Protein Folding: Deciphering the Second Half of the Genetic Code. American Association for the Advancement of Science, Washington, DC.

    Google Scholar 

  • Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learnng. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Holland, J. J. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI.

    Google Scholar 

  • Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. & Holmes, K. C. (1990). Atomic Structure of the Actin: DNase I Complex. Nature, 347, 37–44.

    PubMed  Google Scholar 

  • Langton, C. G. (1992). Artificial Life. In 1991 Lectures in Complex Systems, SFI Studies in the Sciences of Complexity, Lect. Vol. IV (Nadel, L. & Stein, D. eds.), Addison-Wesley, Reading, MA.

    Google Scholar 

  • Lau, K. F. & Dill, A. (1990). Theory for protein mutability and biogenesis. Proc. Natl. Acad. Sci. Usa, 87, 638–642.

    Google Scholar 

  • Lehman, N. & Joyce, G. F. (1993). Evolution in vitro of an RNA enzyme with altered metal dependence. Nature, 361, 182–185.

    Google Scholar 

  • Lund, H. H. & Parisi, D. (1994). Simulations with an Evolvable Fitness Formula. Technical Report PCLA-1-94, C.N.R., Rome.

    Google Scholar 

  • Lüthy, R., Bowie, J. U. & Eisenberg, D. (1992). Assessment of Protein Models with Three-Dimensional Profiles. Nature, 356, 83–85.

    Google Scholar 

  • Maiorov, V. N. & Crippen, G. M. (1992). A Contact Potential that Recognizes the Correct Folding of Globular Proteins. J. Mol. Biol., 227, 876–888.

    Google Scholar 

  • Oldfield, T. J. & Hubbard, R. E. (1994). Analysis of Cα Geometry in Protein Structures. Proteins, 18, 324–337.

    Google Scholar 

  • Parisi, D., Cecconi, F. & Nolfi, S. (1990). Econets: Neural Networks that Learn in a Environment. Network, 1, 149–168.

    Google Scholar 

  • Qian, N. & Sejnowski, T. J. (1988). Predicting the Secondary Structure of Globular Proteins Using Neural Network Models. J. Mol. Biol., 202, 865–884.

    PubMed  Google Scholar 

  • Rooman, M. J., Kocher, J-P. A. & Wodak, S. J. (1991). Prediction of Protein Backbone Conformation Based on Seven Structure Assignments: Influence of Local Interactions. J. Mol. Biol., 221, 961–979.

    Google Scholar 

  • Rost, B. & Sander, C. (1994). Combining Evolutionary Information and Neural Networks to Predict Protein Secondary Structure. Proteins, 19, 55–72.

    Google Scholar 

  • Rost, B., Sander, C. & Schneider, R. (1994). Redefining the Goals of Protein Secondary Structure Prediction. J. Mol. Biol., 235, 13–26.

    Google Scholar 

  • Rumelhart, D. E. & McClelland, J. L. (1986). Parallel Distributed Processing. Explorations In the Microstructure of Cognition. MIT Press, Cambridge, MA.

    Google Scholar 

  • Šali, A., Shakhnovich, E. & Karplus, M. (1994). Kinetics of Protein Folding. A Lattice Model Study of the Requirements for Folding to the Native State. J. Mol. Biol., 235, 1614–1636.

    Google Scholar 

  • Sippl, M. J. & Weitckus, S. (1992). Detection of Native-Like Models for Amino Acid Sequences of Unknown Three-Dimensional Structure in a Data Base of Known Protein Conformations. Proteins, 13, 258–271.

    Google Scholar 

  • Sondek, J. & Shortle, D. (1990). Accommodation of Single Amino Acid Insertions by the Native State of Staphylococcal Nuclease. Proteins, 7, 299–305.

    Google Scholar 

  • Taylor, C. & Jefferson, D. (1994). Artificial Life as a Tool for Biological Inquiry. Artificial Life, 1, 1–13.

    Google Scholar 

  • Udgaonkar, J. B. & Baldwin, R. L. (1988). NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A. Nature, 335, 694–699.

    Google Scholar 

  • Unger, R. & Moult, J. (1993). Genetic Algorithms for Protein Folding Simulations. J. Mol. Biol., 231, 75–81.

    Google Scholar 

  • Weissman, J. S. & Kim, P. S. (1992). The Disulfide Folding Pathway of BPTI. Science, 256, 112–114.

    Google Scholar 

  • Wilson, S. W. (1991). The Animat Path to AI. In From animals to animats: Proceedings of the First International Conference on Simulation of Adaptive Behavior (Meyer, J.-A. and Wilson, S. W., eds), pp. 15–21, MIT Press, Cambridge, MA.

    Google Scholar 

  • Wodak, S. J. & Rooman, M. J. (1993). Generating and testing protein folds. Curr. Opin. Struct. Biol., 3, 247–259.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Federico Morán Alvaro Moreno Juan Julián Merelo Pablo Chacón

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Calabretta, R., Nolfi, S., Parisi, D. (1995). An artificial life model for predicting the tertiary structure of unknown proteins that emulates the folding process. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds) Advances in Artificial Life. ECAL 1995. Lecture Notes in Computer Science, vol 929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59496-5_349

Download citation

  • DOI: https://doi.org/10.1007/3-540-59496-5_349

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59496-3

  • Online ISBN: 978-3-540-49286-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics