Skip to main content

Artificial life needs a real epistemology

  • 1. Foundations and Epistemology
  • Conference paper
  • First Online:
Advances in Artificial Life (ECAL 1995)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 929))

Included in the following conference series:

Abstract

Foundational controversies in artificial life and artificial intelligence arise from lack of decidable criteria for defining the epistemic cuts that separate knowledge of reality from reality itself, e.g., description from construction, simulation from realization, mind from brain. Selective evolution began with a description-construction cut, i.e., the genetically coded synthesis of proteins. The highly evolved cognitive epistemology of physics requires an epistemic cut between reversible dynamic laws and the irreversible process of measuring initial conditions. This is also known as the measurement problem. Good physics can be done without addressing this epistemic problem, but not good biology and artificial life, because open-ended evolution requires the physical implementation of genetic descriptions. The course of evolution depends on the speed and reliability of this implementation, or how efficiently the real or artificial physical dynamics can be harnessed by nondynamic genetic symbols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelman, L. M., 1994, Molecular computation of solutions to combinatorial problems, Science, 266, 1021–1024.

    Google Scholar 

  2. Barrow, J. D., 1991, Theories of Everything, Oxford University Press, p. 203.

    Google Scholar 

  3. Bennett, C. H., 1982, The thermodynamics of computation — a review, Int. J. Theor. Phys., 21, 905–940.

    Google Scholar 

  4. Bennett, C. H., 1987, Demons, engines, and the second law, Sci. Am., 257, 108–116.

    Google Scholar 

  5. Born, M., 1964, Symbol and reality, Universitas 7, 337–353. Reprinted in Born, M., Physics in my Generation, Springer-Verlag, NY, pp. 132–146.

    Google Scholar 

  6. Brooks, R., 1992, Artificial life and real robots. In Toward a Practice of Autonomous Systems, F. Varela and P. Bourgine, eds, MIT Press, Cambridge, MA, pp. 3–10.

    Google Scholar 

  7. Cassirer, E., 1957, The Philosophy of Symbolic Forms, Vol 3: The Phenomena of Knowledge, Yale Univ. Press, New Haven, CT.

    Google Scholar 

  8. Chaitin, G., 1982, Gödel's theorem and information. Int. J. of Theor. Phys. 21, 941–953.

    Google Scholar 

  9. Chaitin, G., 1987, Algorithmic Information Theory, Cambridge University Press.

    Google Scholar 

  10. Churchland P. S. and Sejnowski, T. J., 1992, The Computational Brain, MIT Press.

    Google Scholar 

  11. Conrad, M., 1983, Adaptability, Plenum, New York.

    Google Scholar 

  12. Conrad, M., 1989, The brain-machine disanalogy, BioSystems, 22, 197–213.

    Google Scholar 

  13. Conrad, M., 1990, The geometry of evolution, BioSystems, 24, 61–81.

    Google Scholar 

  14. Curie, P., 1908, Oeuvres, Gauthier-Villars, Paris, p. 127.

    Google Scholar 

  15. Curtis, C. and Greenslet, F., 1945, The Practical Cogitator, Houghton Mifflin, Boston, p. 277.

    Google Scholar 

  16. Dietrich, E. 1994, ed., Thinking Computers and Virtual Persons, Academic Press, NY, p. 13.

    Google Scholar 

  17. Dennett, D., 1994, Artificial life as philosophy, Artificial Life 1, 291–292.

    Google Scholar 

  18. Eddington, A., 1928, The Nature of the Physical World, Macmillan, New York, p. 260.

    Google Scholar 

  19. Eigen, M., 1992, Steps Toward Life, Oxford University Press.

    Google Scholar 

  20. Fontana, W., Wagner, G., and Buss, L. W., 1994, Beyond digital naturalism, Artificial Life, 1, 211–227.

    Google Scholar 

  21. Gödel, K., 1964, Russell's mathematical logic, and What is Cantor's continuum problem? In P. Benacerraf and H. Putnam, eds., Philosophy of Mathematics, Prentice-Hall, Englewood Cliffs, NJ, pp. 211–232, 258–273.

    Google Scholar 

  22. Harnad, S., 1990, The symbol grounding problem, Physica D 42, 335–346.

    Google Scholar 

  23. Hopfield, J. J. 1994, Physics, computation, and why biology looks so different, J. Theor. Biol. 171, 53–60.

    Google Scholar 

  24. Houtappel, R. M. F., Van Dam, H., and Wigner, E. P., 1965, The conceptual basis and use of the geometric invariance principles, Rev. Mod. Physics 37, 595–632.

    Google Scholar 

  25. Hunter, L., 1993, ed., Artificial Intelligence and Molecular Biology, AAAI/ MIT Press, Menlo Park, CA.

    Google Scholar 

  26. Jaynes, E., 1990, Probability in quantum theory. In W. H. Zurek, ed., Complexity, Entropy, and the Physics of Information, Addison-Wesley, Redwood City, CA, p. 382.

    Google Scholar 

  27. Kleene, S. C., 1952, Introduction to Metamathematics, Van Nostrand, Princeton, NJ.

    Google Scholar 

  28. Landauer, R., 1986, Computation and physics: Wheeler's meaning circuit, Found. Phys., 16, 551–564.

    Google Scholar 

  29. Langton, C., 1989, Artificial life, In C. Langton, ed., Artificial Life, Addison-Wesley, Redwood City, CA, pp. 1–47.

    Google Scholar 

  30. Langton, C., Taylor, C., Farmer, J., and Rasmussen, S., eds., Artificial Life II, Addison-Wesley, Redwood City, CA.

    Google Scholar 

  31. Leff, H. S. and Rex, A. F., eds., 1990, Maxwell's Demon, Entropy. Information. Computing, Princeton Univ. Press, Princeton, NJ.

    Google Scholar 

  32. Pattee, H. H., 1969, How does a molecule become a message? Developmental Biology Supplement 3, 1–16.

    Google Scholar 

  33. Pattee, H. H., 1972, Laws, constraints, symbols, and languages. In C. H. Waddington, ed., Towards a Theoretical Biology 4, Edinburgh Univ. Press, pp. 248–258.

    Google Scholar 

  34. Pattee, H. H., 1982, Cell psychology: An evolutionary approach to the symbol-matter problem. Cognition and Brain Theory 5(4), 325–341.

    Google Scholar 

  35. Pattee, H. H., 1988, Simulations, realizations, and theories of life. In C. Langton, ed., Artificial Life, Addison-Wesley, Redwood City, CA, pp. 63–77.

    Google Scholar 

  36. Pattee, H. H., 1989, The measurement problem in artificial world models, BioSystems, 23, 281–290.

    Google Scholar 

  37. Pattee, H. H., 1990, Response to E. Dietrich's “Computationalism,” Social Epistemology 4(2), 176–181.

    Google Scholar 

  38. Pattee, H. H., 1993, The limitations of formal models of measurement, control, and cognition, Applied Math. and Computation, 56, 111–130.

    Google Scholar 

  39. Pattee, H. H., 1995, Evolving self-reference: matter, symbols, and semantic closure, Communication and Cognition — AI 12(1–2), 9–28.

    Google Scholar 

  40. Penrose, R., 1989, The Emperor's New Mind, Oxford University Press, p. 352.

    Google Scholar 

  41. Planck, M., 1960, A Survey of Physical Theory, Dover, New York, p. 64.

    Google Scholar 

  42. Polanyi, M., 1964, Personal Knowledge, Harper & Row, NY.

    Google Scholar 

  43. Rosen, R., 1986, Causal structures in brains and machines, Int. J. General Systems, 12, 107–126.

    Google Scholar 

  44. Schuster, P., 1994, Extended molecular evolutionary biology: Artificial life bridging the gap between chemistry and biology, Artificial Life, 1, 39–60.

    Google Scholar 

  45. Toffoli, T. 1982, Physics and computation, International J. of Theoretical Physics 21, 165–175.

    Google Scholar 

  46. Turing, A., 1936, On computable numbers, with an application to the Entscheidungsproblem, Proc. Lond. Math. Soc. 42, 230–265.

    Google Scholar 

  47. von Neumann, J., 1955, Mathematical Foundations of Quantum Mechanics, Princeton Univ. Press, Princeton, NJ, Chapter VI.

    Google Scholar 

  48. von Neumann, J., 1966, The Theory of Self-reproducing Automata, A. Burks, ed., Univ. of Illinois Press, Urbana, IL.

    Google Scholar 

  49. von WeizsÄcker, C. F., 1973, Probability and quantum mechanics, Brit. J. Phil. Sci. 24, 321–337.

    Google Scholar 

  50. Wheeler, J. and Zurek, W., 1983, Quantum Theory and Measurement, Princeton Univ. Press, Princeton, NJ.

    Google Scholar 

  51. Wheeler, J. A., 1990, Information, physics, quantum: The search for links. In W. H. Zurek, ed., Addison-Wesley, Redwood City. CA.

    Google Scholar 

  52. Whitehead, A. N., 1927, Symbolism: Its meaning and Effect, Macmillan, NY.

    Google Scholar 

  53. Whitley, D. and Hanson, T., 1989, Optimizing neural networks using faster, more accurate genetic search. In Proceedings of the Third International Conference on GAs, Morgan Kauffman, pp. 391–396.

    Google Scholar 

  54. Wigner, E. P., 1964, Events, laws, and invariance principles, Science 145, 995–999.

    Google Scholar 

  55. Wilber, K., 1985, Quantum Questions, Shambala, Boston, MA.

    Google Scholar 

  56. Zuker, M., 1989, On finding all suboptimal folding of large RNA sequences using thermodynamics and auxiliary information, Nucleic Acids Res. 9, 133.

    Google Scholar 

  57. Zurek, W. H., 1990, Complexity. Entropy, and the Physics of Information, Addison-Wesley, Redwood City, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Federico Morán Alvaro Moreno Juan Julián Merelo Pablo Chacón

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pattee, H.H. (1995). Artificial life needs a real epistemology. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds) Advances in Artificial Life. ECAL 1995. Lecture Notes in Computer Science, vol 929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59496-5_286

Download citation

  • DOI: https://doi.org/10.1007/3-540-59496-5_286

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59496-3

  • Online ISBN: 978-3-540-49286-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics