Skip to main content

The semiclassical approximation to quantum gravity

  • Conference paper
  • First Online:
Canonical Gravity: From Classical to Quantum

Part of the book series: Lecture Notes in Physics ((LNP,volume 434))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A. Ashtekar (1991): Lectures on non-perturbative canonical gravity (World Scientific, Singapore).

    Google Scholar 

  • A. Ashtekar (1988): New perspectives in canonical gravity (Bibliopolis, Napoli).

    Google Scholar 

  • R. Balbinot, A. Barletta, and G. Venturi (1990): Matter, quantum gravity, and adiabatic phase. Phys. Rev. D 41, 1848.

    Google Scholar 

  • T. Banks (1985): TCP, Quantum Gravity, the Cosmological Constant, and all that ... Nucl. Phys. B249, 332.

    Google Scholar 

  • J. B. Barbour (1992): Private communication.

    Google Scholar 

  • J. B. Barbour (1993): Time and complex numbers in canonical quantum gravity. Phys. Rev. D 47, 5422.

    Google Scholar 

  • E. P. Belasco and H. C. Ohanian (1969): Initial Conditions in General Relativity: Lapse and Shift Formulation. Journ. Math. Phys. 10, 1503.

    Google Scholar 

  • O. Bertolarni (1991): Nonlinear corrections to quantum mechanics from quantum gravity. Phys. Lett. A154, 225.

    Google Scholar 

  • R. Brout and G. Venturi (1989): Time in semiclassical gravity. Phys. Rev. D 39, 2436.

    Google Scholar 

  • R. D. Carlitz and R. D. Willey (1987): Lifetime of a black hole. Phys. Rev. D 36, 2336.

    Google Scholar 

  • D. Cosandey (1993): Localized quantum mechanics in a semiclassical universe. University of Bern preprint.

    Google Scholar 

  • T. Damour and J. H. Taylor (1991): On the orbital period change of the binary pulsar PSR 1913+16. Astrophys. Journal 366, 501.

    Google Scholar 

  • D. P. Datta (1993): Semiclassical backreaction and Berry's phase. Mod. Phys. Lett. A 8, 191 (1993).

    Google Scholar 

  • B. S. DeWitt (1967): Quantum Theory of Gravity I. The Canonical Theory. Phys. Rev. 160, 1113.

    Google Scholar 

  • B. S. DeWitt (1970): “Spacetime as a sheaf of geodesics in superspace”, in Relativity, ed. by M. Carmeli, S. Fickler, and L. Witten (Plenum, New York).

    Google Scholar 

  • B. S. DeWitt (1975): Quantum field theory in curved spacetime. Phys. Rep. 19, 295.

    Google Scholar 

  • K. Freese, C. T. Hill, and M. Mueller (1985):Covariant functional Schrödinger formalism and applicationto the Hawking effect. Nucl. Phys. B255, 693.

    Google Scholar 

  • U. H. Gerlach (1969): Derivation of the Ten Einstein Field Equations from the Semiclassical Approximation to Quantum Geometrodynamics. Phys. Rev. 177, 1929.

    Google Scholar 

  • D. Giulini (1993): “What is the geometry of superspace?”, in from Newton's bucket to quantum gravity, ed. by J. B. Barbour and H. Pfister (Birkhäuser, Boston).

    Google Scholar 

  • J. Greensite (1990): Time and Probability in Quantum Cosmology. Nucl. Phys. B342, 409.

    Google Scholar 

  • J. Guven, B. Lieberman, and C. T. Hill (1989): Schrödinger — picture field theory in Robertson-Walker flat spacetimes. Phys. Rev. D 39, 438.

    Google Scholar 

  • S. Habib and R. Laflamme (1990): Wigner function and decoherence in quantum cosmology. Phys. Rev. D 42, 4056.

    Google Scholar 

  • J. J. Halliwell (l987): Correlations in the wave function of the Universe. Phys. Rev. D 36, 3626.

    Google Scholar 

  • J. J. Halliwell and S. W. Hawking (1985): Origin of structure in the Universe. Phys. Rev. D 31, 1777.

    Google Scholar 

  • J. B. Hartle (1986): “Prediction in Quantum Cosmology”, in Gravitation in Astrophysics, ed. by B. Carter and J. B. Hartle (Plenum Press, New York).

    Google Scholar 

  • S. W. Hawking (1976): Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460.

    Google Scholar 

  • W. Heisenberg and H. Euler (1936): Folgerungen aus der Diracschen Theorie des Positrons. Z. Phys. 98, 714.

    Google Scholar 

  • C. J. Isham (1992): “Canonical Quantum Gravity and the Problem of Time”, in Integrable Systems, Quantum Groups, and Quantum Field Theories (Kluwer Academic Publishers, London).

    Google Scholar 

  • R. Jackiw (1988a): Berry's phase — Topological Ideas from Atomic, Molecular and Optical Physics. Comments At. Mol. Phys. 21, 71.

    Google Scholar 

  • R. Jackiw (1988b): “Analysis on infinite-dimensional manifolds-Schrödinger representation for quantized fields”, Field Theory and Particle Physics, ed. by O. Eboli, M. Gomes, and A. Santano (World Scientific, Singapore).

    Google Scholar 

  • E. Joos and H. D. Zeh (1985): The Emergence of Classical Properties through Interaction with the Environment. Z. Phys. B59, 223.

    Google Scholar 

  • C. Kiefer (1987): Continuous measurement of mini-superspace variables by higher multipoles. Class. Quantum Grav. 4, 1369.

    Google Scholar 

  • C. Kiefer (1992a): Functional Schrödinger equation for scalar QED. Phys. Rev. D 45, 2044.

    Google Scholar 

  • C. Kiefer (1992b): Decoherence in quantum electrodynamics and quantum gravity. Phys. Rev. D 46, 1658.

    Google Scholar 

  • C. Kiefer (1992c): “Decoherence in quantum cosmology”, in Proceedings of the 10th Seminar on Relativistic Astrophysics and Gravitation, ed. by S. Gottlöber, J. P. Mücket, and V. Müller (World Scientific, Singapore).

    Google Scholar 

  • C. Kiefer (1993a): Topology, decoherence, and semiclassical gravity. Phys. Rev. D 47, 5414.

    Google Scholar 

  • C. Kiefer (1993b): “Semiclassical gravity with non-minimally coupled fields”, in preparation.

    Google Scholar 

  • C. Kiefer (1993c): “Semiclassical gravity and the problem of time”, to appear in the Proceedings of the Cornelius Lanczos International Centenary Conference.

    Google Scholar 

  • C. Kiefer (1993d): “Quantum cosmology and the emergence of a classical world”, in Mathematics, Philosophy and Modern Physics, ed. by E. Rudolph and I.-O. Stamatescu (Springer, Berlin).

    Google Scholar 

  • C. Kiefer and T. P. Singh (1991): Quantum Gravitational Corrections to the Functional Schrödinger Equation. Phys. Rev. D 44, 1067.

    Google Scholar 

  • C. Kiefer, T. Padmanabhan, and T. P. Singh (1991): A comparison between semiclassical gravity and semiclassical electrodynamics. Class. Quantum Grav. 8, L 185.

    Google Scholar 

  • C. Kiefer, R. Miiller, and T. P. Singh (1993): Quantum Gravity and Nonunitarity in Black Hole Evaporation. Preprint gr-gc/9308024.

    Google Scholar 

  • J. Kowalski-Glikman and J. C. Vink (1990): Gravity-mattermini-superspace: quantum regime, classical regime and in between. Class. Quantum Grav. 7, 901.

    Google Scholar 

  • K. V. Kuchař (1970): Ground State Functional of the Linearized Gravitational Field. Journ. Math. Phys. 11, 3322.

    Google Scholar 

  • K. V. Kuchar (1992): “Time and Interpretations of Quantum Gravity”, In Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics, ed. by G. Kunstatter, D. Vincent and J. Williams (World Scientific, Singapore, 1992).

    Google Scholar 

  • C. Kuo and L. H. Ford (1993): Semiclassical gravity theory and quantum fluctuations. Phys. Rev. D 47, 4510.

    Google Scholar 

  • C. Lämmerzahl (1993): Private communication.

    Google Scholar 

  • L. D. Landau and E. M. Lifshitz (1975): Quantenmechanik (AkademieVerlag, Berlin).

    Google Scholar 

  • V. G. Lapchinsky and V. A. Rubakov (1979): Canonical quantization of gravity and quantum field theory in curved space-time. Acta Physica Polonica B10, 1041.

    Google Scholar 

  • J. Louko (1993): Holomorphic quantum mechanics with a quadratic Hamiltonian constraint. Phys. Rev. D 48, 2708.

    Google Scholar 

  • V. Moncrief and C. Teitelboim (1972): Momentum Constraints as Integrability Conditions for the Hamiltonian Constraint in General Relativity. Phys. Rev. D 6, 966.

    Google Scholar 

  • D. N. Page (1993): “Black Hole Information”, to appear in the Proceedings of the 5th Canadian Conference on General Relativity and Relativistic Astrophysics, Waterloo, Ontario, May 1993.

    Google Scholar 

  • T. Padmanabhan (1990): A Definition for Time in Quantum Cosmology. Pramana 35, L199.

    Google Scholar 

  • T. Padmanabhan and T. P. Singh: On the semiclassical limit of the Wheeler-DeWitt equation. Class. Quantum Grav. 7, 411 (1990).

    Google Scholar 

  • J. P. Paz and S. Sinha (1991): Decoherence and back reaction: The origin of the semiclassical Einstein equations. Phys. Rev. D 44, 1038.

    Google Scholar 

  • A. Peres (1962): On Cauchy's Problem in General Relativity. Nuovo Cimento XXVI, 53.

    Google Scholar 

  • E. Schrödinger (1926a): Quantisierung als Eigenwertproblem (Erste Mitteilung). Annalen der Physik 79, 361.

    Google Scholar 

  • E. Schrödinger (1926b): Quantisierung als Eigenwertproblem (Vierte Mitteilung). Annalen der Physik 81, 109.

    Google Scholar 

  • T. P. Singh (1990): Gravity induced corrections to quantum mechanical wave functions. Class. Quantum Grav. 7, L149.

    Google Scholar 

  • T. P. Singh (1993): “Semiclassical gravity”, in Advances in Gravitation and Cosmology, ed. by B. R. Iyer, A. R. Prasanna, R. K. Varma, and C. V. Vishveshwara (Wiley, Eastern, New Delhi).

    Google Scholar 

  • E. J. Squires (1991): The dynamical role of time in quantum cosmology. Phys. Lett. A155, 357.

    Google Scholar 

  • A. Vilenkin (1989): Interpretation of the wave function of the Universe. Phys. Rev. D 39, 1116.

    Google Scholar 

  • J. Wudka (1990): Remarks on the Born-Oppenheimer approximation. Phys. Rev. D 41, 712 (1990).

    Google Scholar 

  • H. D. Zeh (1967): Symmetrieverletzende Modellzustünde and kollektive Bewegungen. Z. Phys. 202, 38.

    Google Scholar 

  • H. D. Zeh (1986): Emergence of Classical Time from a Universal Wave Function. Phys. Lett. A116, 9.

    Google Scholar 

  • H. D. Zeh (1988): Time in Quantum Gravity. Phys. Lett. A126, 311.

    Google Scholar 

  • H. D. Zeh (1992): The Physical Basis of The Direction of Time (Springer, Berlin).

    Google Scholar 

  • H. D. Zeh (1993a): There are no quantum jumps, nor are there particles! Phys. Lett. A172, 189.

    Google Scholar 

  • H. D. Zeh (1993b): “Decoherence and measurements”, to appear in the Proceedings of Stochastic evolution of quantum states in open systems and measurement processes, Budapest, March 1993.

    Google Scholar 

  • W. H. Zurek (1991): Decoherence and the Transition from Quantum to Classical. Phys. Today 44, 36.

    Google Scholar 

  • W. H. Zurek (1993): Preferred States, Predictability, Classicality and the Environment-Induced Decoherence. Progr. Theor. Phys. 89, 281.

    Google Scholar 

Download references

Authors

Editor information

J. Ehlers H. Friedrich

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

Kiefer, C. (1994). The semiclassical approximation to quantum gravity. In: Ehlers, J., Friedrich, H. (eds) Canonical Gravity: From Classical to Quantum. Lecture Notes in Physics, vol 434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58339-4_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-58339-4_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58339-4

  • Online ISBN: 978-3-540-48665-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics