Skip to main content

Inference of finite automata using homing sequences

  • Chapter
  • First Online:
Machine Learning: From Theory to Applications

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 661))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angluin, D. On the complexity of minimum inference of regular sets. Information, and Control 39 (1978) 337–350.

    Google Scholar 

  2. Angluin, D. A note on the number of queries needed to identify regular languages. Information and Control 51 (1981) 76–87.

    Google Scholar 

  3. Angluin, D. Learning regular sets from queries and counterexamples. Information and Computation 75 (1987) 87–106.

    Google Scholar 

  4. Dean, T., Angluin, D., Basye, K., Engelson, S., Kaelbling, L., Kokkevis, E., and Maron, O. Inferring finite automata with stochastic output functions and an application to map learning. In Proceedings Tenth National Conference on Artificial Intelligence (1992) 208–214.

    Google Scholar 

  5. Drescher, G. L. Genetic AI—translating Piaget into Lisp. MIT Artificial Intelligence Laboratory Technical Report 890 (1986).

    Google Scholar 

  6. Gold, E. M. System identification via state characterization. Automatica 8 (1972) 621–636.

    Google Scholar 

  7. Gold, E. M. Complexity of automaton identification from given data. Information and Control 37 (1978) 302–320.

    Google Scholar 

  8. Kearns M. and Valiant, L. G. Cryptographic limitations on learning Boolean formulae and finite automata. In Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing (1989) 433–444. (Also Journal of the Association for Computing Machinery, to appear).

    Google Scholar 

  9. Kohavi, Z. Switching and Finite Automata Theory. McGraw-Hill, Second Edition (1978).

    Google Scholar 

  10. Benjamin J. Kuipers and Yung-Tai Byun. A robust, qualitative approach to a spatial learning mobile robot. In SPIE Advances in Intelligent Robotics Systems (1988).

    Google Scholar 

  11. Mataric, M. J. A distributed model for mobile robot environment-learning and navigation. Massachusetts Institute of Technology Master's thesis (1990). (Also MIT Artificial Intelligence Laboratory Technical Report AI-TR 1228).

    Google Scholar 

  12. Pitt, L. Inductive inference, DFAs, and computational complexity. University of Illinois at Urbana-Champaign Department of Computer Science Technical Report UIUCDCS-R-89-1530 (1989).

    Google Scholar 

  13. Pitt, L. and Warmuth, M. K. The minimum consistent DFA problem cannot be approximated within any polynomial. In Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing (1989). (Also University of Illinois at Urbana-Champaign, Department of Computer Science Technical Report UIUCDCS-R-89-1499 and Journal of the Association for Computing Machinery, to appear).

    Google Scholar 

  14. Pitt, L. and Warmuth, M. K. Prediction-preserving reducibility. Journal of Computer and System Sciences 41(3) (1990) 430–467.

    Google Scholar 

  15. Rivest, R. L. and Schapire, R. E. Diversity-based inference of finite automata. In 28th Annual Symposium on Foundations of Computer Science (1987) 78–87. (Also Journal of the Association for Computing Machinery, to appear).

    Google Scholar 

  16. Rivest, R. L. and Schapire, R. E. A new approach to unsupervised learning in deterministic environments. In Machine Learning: An Artificial Intelligence Approach, Volume III. Yves Kodratoff and Ryszard Michalski, editors. Morgan Kaufmann (1990) 670–684.

    Google Scholar 

  17. Schapire, R. E. Diversity-based inference of finite automata. Massachusetts Institute of Technology Master's thesis (1988). (Also MIT Laboratory for Computer Science Technical Report MIT/LCS/TR-413).

    Google Scholar 

  18. Schapire, R. E. The Design and Analysis of Efficient Learning Algorithms. MIT Press (1992).

    Google Scholar 

  19. Wilson, S. W. Knowledge growth in an artificial animal. In Proceedings of an International Conference on Genetic Algorithms and their Applications (1985) 16–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Schapire .

Editor information

Stephen José Hanson Werner Remmele Ronald L. Rivest

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rivest, R.L., Schapire, R.E. (1993). Inference of finite automata using homing sequences. In: Hanson, S.J., Remmele, W., Rivest, R.L. (eds) Machine Learning: From Theory to Applications. Lecture Notes in Computer Science, vol 661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56483-7_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-56483-7_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56483-6

  • Online ISBN: 978-3-540-47568-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics