Skip to main content

Characterizing regular languages with polynomial densities

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1992 (MFCS 1992)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 629))

Abstract

A language L is said to have a polynomial density if the function pL.(n)=¦L∩∑n¦ of L is bounded by a polynomial. We show that the function p R(n) of a regular language R is O(n k), for some k≥0, if and only if R can be represented as a finite union of the regular expressions of the form xy *1 z1 ...y *t zt with a nonnegative integer tk+1, where x,y 1,z 1,..., yt, zt are all strings in ∑*.

We prove a characterization for the (restricted) starheight-one languages. We show that a regular language is starheight one if and only if it is the image of a regular language of polynomial density under a finite substitution. We also show that the set of starheight-one languages includes all the regular languages with polynomial densities and their complements.

This research is supported in part by the Natural Sciences and Engineering Research Council of Canada grants OGP0041630 and OGP0046373

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Berman and J. Hartmanis, “On Isomorphisms and Density of NP and Other Complete Sets”, SIAM J. of Comput 6 (1977) 305–322.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Berstel and C. Reutenauer, Rational Series and Their Languages, EATCS Monographs on Theoretical Computer Science, edited by Brauer, Rozenberg, and Salomaa, Springer-Verlag, 1988.

    Google Scholar 

  3. J. Brzozowski, “Open Problems about Regular Languages”, Formal Language Theorem — Perspectives and Open Problems, pp. 23–48, edited by R. V. Book, 1980.

    Google Scholar 

  4. D. I. A. Cohen, Basic Techniques of Combinatorial Theory, John Wiley & Sons, New York, 1978.

    MATH  Google Scholar 

  5. K. Culik II, F.E. Fich and A. Salomaa, “A Homomorphic Characterization of Regular Languages”, Discrete Applied Mathematics 4, (1982)149–152.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Eilenberg, Automata, Languages and Machines, vol. A, Academic Press, 1974.

    Google Scholar 

  7. J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison Wesley (1979), Reading, Mass.

    MATH  Google Scholar 

  8. W. Kuich and A. Salomaa, Semirings, Automata, Languages, Springer-Verlag, 1986.

    Google Scholar 

  9. B. Ravikumar and O. H. Ibarra, “Relating the type of ambiguity of finite automata to the succintness of their representation”, SIAM J. Comput. vol. 18, no. 6 (1989) 1263–1282.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Salomaa, Computation and Automata, Encyclopedia of Mathematics and Its Applications, vol. 25. Cambridge University Press, 1985.

    Google Scholar 

  11. A. Salomaa and M. Soittola, Automata-Theoretic Aspects of Formal Power Series, Springer-Verlag, 1978.

    Google Scholar 

  12. J. Shallit, “Numeration Systems, Linear Recurrences, and Regular Sets”, Research Report CS-91-32, Dept. of Computer Science, Univ. of Waterloo, 1991.

    Google Scholar 

  13. M. P. Schützenberger, Finite Counting Automata, Information and Control, 5 (1962) 91–107.

    Article  MathSciNet  Google Scholar 

  14. S. Yu, “Can the Catenation of Two Weakly Sparse Languages be Dense?”, Discrete Applied Mathematics 20 (1988) 265–267.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ivan M. Havel Václav Koubek

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Szilard, A., Yu, S., Zhang, K., Shallit, J. (1992). Characterizing regular languages with polynomial densities. In: Havel, I.M., Koubek, V. (eds) Mathematical Foundations of Computer Science 1992. MFCS 1992. Lecture Notes in Computer Science, vol 629. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-55808-X_48

Download citation

  • DOI: https://doi.org/10.1007/3-540-55808-X_48

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55808-8

  • Online ISBN: 978-3-540-47291-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics