Skip to main content

The emptiness problem for intersections of regular languages

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1992 (MFCS 1992)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 629))

Abstract

Given m finite automata, the emptiness of intersection problem is to determine whether there exists a string which is accepted by all m automata. In the following we consider the case, when m is bounded by a function in the input length, i.e., in the size and number of the automata. In this way we get complete problems for nondeterministic space-bounded and timespace-bounded complexity classes. Further on, we get close relations to nondeterministic sublinear time classes and to classes which are defined by bounding the number of nondeterministic steps.

work supported by the Deutsche Forschungsgemeinschaft, La 618 1-1 and SFB 0342 A4 “KLARA”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Álvarez, J. Diaz, and J. Torán. Complexity classes with complete problems between P and NP-C. In Proc. of FCT, number 380 in LNCS, pages 13–25. Springer, 1989.

    Google Scholar 

  2. J. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity Theory I. Springer, 1988.

    Google Scholar 

  3. J. F. Buss and J. Goldsmith. Nondeterminism within P. In Proc. of 8th STACS, number 480 in LNCS, pages 348–359. Springer, 1991.

    Google Scholar 

  4. S. R. Buss. The boolean formula value problem is in ALOGTIME. In Proc. 19th Ann. ACM Symp. on Theory of Computing, pages 123–131, 1987.

    Google Scholar 

  5. S. A. Cook. A taxonomy of problems with fast parallel algorithms. Inform. and Control, 64:2–22, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Dassow and K.-J. Lange. Computational complexity and hardest languages of automata with abstract storages. In Proc. of 8th FCT, number 529 in LNCS, pages 200–209. Springer, 1991.

    Google Scholar 

  7. P. C. Fischer and C. M. R. Kintala. Real-time computations with restricted non-determinism. Math. Systems Theory, 12:219–231, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  8. Z. Galil. Hierarchies of complete problems. Acta Inf., 6:77–88, 1976.

    MATH  MathSciNet  Google Scholar 

  9. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Language, and Computation. Addison-Wesley, Reading Mass., 1979.

    Google Scholar 

  10. H. Hunt. On the complexity of finite, pushdown, and stack automata. Math. Systems Theory, 10:33–52, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  11. N. Jones. Space-bounded reducibility among combinatorial problems. J. Comp. System Sci., 11:68–85, 1975.

    Article  MATH  Google Scholar 

  12. C. M. R. Kintala and P. C. Fischer. Refining nondeterminism in relativezed polynomial-time bounded computations. SIAM J. Comput., 9(1):46–53, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Kozen. Lower bounds for natural proof systems. In Proc. of 18th FOCS, pages 254–266, 1977.

    Google Scholar 

  14. R. Ladner and N. Lynch. Relativization of questions about log space computability. Math. Systems Theory, 10:19–32, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  15. I. Niepel. Logarithmisch platzbeschränkte Komplexitätsklassen—Charakterisierung und offene Fragen. Diplomarbeit, University Hamburg, Mar. 1987. (in German).

    Google Scholar 

  16. W. Ruzzo. On uniform circuit complexity. J. Comp. System Sci., 22:365–338, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  17. L. Stockmeyer and A. Meyer. Word problems requiring exponential time: preliminary report. In Proc. of the 5th Annual ACM Symposium on Theory of Computing, pages 1–9, 1973.

    Google Scholar 

  18. K. Wagner and G. Wechsung. Computational complexity. VEB Deutscher Verlag der Wissenschaften, Berlin, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ivan M. Havel Václav Koubek

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lange, KJ., Rossmanith, P. (1992). The emptiness problem for intersections of regular languages. In: Havel, I.M., Koubek, V. (eds) Mathematical Foundations of Computer Science 1992. MFCS 1992. Lecture Notes in Computer Science, vol 629. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-55808-X_33

Download citation

  • DOI: https://doi.org/10.1007/3-540-55808-X_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55808-8

  • Online ISBN: 978-3-540-47291-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics