Skip to main content

Terrestrial response to eruptive solar flares: Geomagnetic storms

  • 5. Coronal Mass Ejections
  • Conference paper
  • First Online:
Eruptive Solar Flares

Part of the book series: Lecture Notes in Physics ((LNP,volume 399))

Abstract

During the interval of August 1978 – December 1979, 56 unambiguous fast forward shocks were identified using magnetic field and plasma data collected by the ISEE-3 spacecraft. Because this interval is at a solar maximum we assume the streams causing these shocks are associated with coronal mass ejections and eruptive solar flares. For these shocks we shall describe the shock- storm relationship for the level of intense storms (Dst < −100 nT). Then, we will discuss the interplanetary structures that are associated with the large-amplitude and long-duration negative B z fields,which are found in the sheath field and/or driver gas regions of the shock and are thought to be the main cause of the intense storms.

We will also present for the solar physicist a summary of the interplanetary/magnetosphere coupling functions, based on the magnetopause reconnection process. We will end by giving an overview of the long-term evolution of geomagnetic storms such as those associated with the seasonal and solar cycle distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akasofu, S.A., and S. Chapman, The development of the main phase of magnetic storms, J. Geophys. Res., 68, 125, 1963.

    Google Scholar 

  • Arnoldy, R.L., Signature in interplanetary medium for substorms, J. Geophys. Res., 76, 5189, 1971.

    Google Scholar 

  • Baker, D.N., E.W. Hones, Jr., J.B. Payne, and W.C. Feldman, A high-time resolution study of interplanetary parameter correlations with AE, Geophys. Res. Lett., 8, 179, 1981.

    Google Scholar 

  • Bargatze, L.F., D.N. Baker, and R.L. McPherron, Solar wind-magnetosphere energy input functions, in Solar Wind Magnetosphere Coupling. (Edited by Y. Kamide and J.A. Slavin), pp. 101–109, Terra Scientific, Tokyo, Japan, 1986.

    Google Scholar 

  • Burton, R.K., R.L. McPherron, and C.T. Russell, An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 80, 4204, 1975.

    Google Scholar 

  • Clua de Gonzalez, A.L., W.D. Gonzalez, S.L.G. Dutra, B.T. Tsurutani, Periodic variation in the geomagnetic activity: A study based on the Ap index, J. Geophys. Res., submitted, 1991.

    Google Scholar 

  • Crooker, N.U., J. Feymnan, and J.T. Gosling, On the high correlation between long-term averages of solar wind speed and geomagnetic activity, J. Geophys. Res., 83, 1933, 1977.

    Google Scholar 

  • Doyle, M.A., and W.J. Burke, S3-2 measurements of the polar cap potential, J. Geophys. Res., 88, 9125, 1983.

    Google Scholar 

  • Dungey, J.W., Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47, 1961.

    Google Scholar 

  • Gold, T., Magnetic storms, Space Sci. Rev., 1, 100, 1962.

    Google Scholar 

  • Gonzalez, W.D., A unified view of solar wind-magnetosphere coupling functions, Planet. Space Sci. 38, 627, 1990.

    Google Scholar 

  • Gonzalez, W.D., and F.S. Mozer, A quantitative model for the potential resulting from reconnection with an arbitrary interplanetary magnetic field, J. Geophys. Res., 79, 4186, 1974.

    Google Scholar 

  • Gonzalez, W.D., and A.L.C. Gonzalez, Solar wind energy and electric field transfer to the Earth's magnetosphere via magnetopause reconnection, Geophys. Res. Lett., 8, 265, 1981.

    Google Scholar 

  • Gonzalez, W.D., and B.T. Tsurutani, Criteria of interplanetary parameters causing intense magnetic storms (Dst < −100 nT), Planet. Space Sci., 35, 1101, 1987.

    Google Scholar 

  • Gonzalez, W.D., B.T. Tsurutani, A.L.C. Gonzalez, E.J. Smith, F. Tang, and S.J. Akasofu, Solar windmagnetosphere coupling during intense magnetic storms (1978–1979), J. Geophys. Res., 94, 8835, 1989.

    Google Scholar 

  • Gonzalez, W.D., L.C. Lee, and B.T. Tsurutani, Comment on the polarity of magnetic clouds, J. Geophys. Res., 95, 17267, 1990a.

    Google Scholar 

  • Gonzalez, W.D., A.L.C. Gonzalez, and B.T. Tsurutani, Dual-Peak solar cycle distribution of intense geomagnetic storms, Planet. Space Sci., 38, 181, 1990b.

    Google Scholar 

  • Gosling, J.T., D.J. McComas, T.L. Phillips, and S.J. Bame, Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections, J. Geophys. Res., 96, 7831, 1991.

    Google Scholar 

  • Holzer, R.E., and J.A. Slavin, An evaluation of three predictors of geomagnetic activity, J. Geophys. Res., 87, 2558, 1982.

    Google Scholar 

  • Kan, J.R., and L.C. Lee, Energy coupling functions and solar wind-magnetosphere dynamo, Geophys. Res. Lett., 6, 577, 1979.

    Google Scholar 

  • Klein, L.W., and L.F. Burlaga, Magnetic clouds at 1AU, J. Geophys. Res., 87, 613, 1982.

    Google Scholar 

  • Marubashi, K., Structure of the interplanetary magnetic clouds and their solar origins, Adv. Space Res., 6(6), 335, 1986.

    Google Scholar 

  • McComas, D.J., J.T. Gosling, S.J. Bame, E.J. Smith, and H.V. Cane, A test of magnetic field draping induced B z perturbations ahead of fast coronal mass ejecta, J. Geophys. Res., 94, 1465, 1989.

    Google Scholar 

  • Murayama, T., Origin of the semiannual variation of geomagnetic Kp indices, J. Geophys. Res., 79, 297, 1974.

    Google Scholar 

  • Murayama, T., and K. Hakamada, Effects of solar wind parameters on the development of magnetospheric substorms, Planet. Space Sci., 23, 75, 1975.

    Google Scholar 

  • Murayama, T., Coupling between solar wind and the Dst index, in Solar Wind-Magnetosphere Coupling Edited by Y. Kamide and J.A. Slavin, pp. 119–126, Terra Scientific, Tokyo-Japan, 1986.

    Google Scholar 

  • Perreault, P. and S.I. Akasofu, A study of geomagnetic storms, Geophys. J. R. Astron. Sci., 54, 547, 1978.

    Google Scholar 

  • Reiff, P.H., R.W. Spiro, and T.W. Hill, Dependence of polar cap potential drop on interplanetary parameters, J. Geophys. Res., 86, 7639, 1981.

    Google Scholar 

  • Rostoker, G., L. Lam, and W.D. Hume, Response time of the magnetosphere to the interplanetary electric field, Can. J. Phys., 50, 544, 1972.

    Google Scholar 

  • Russell, C.T. and R.L. McPherron, Semiannual variation of geomagnetic activity, J. Geophys. Res., 78, 92, 1973.

    Google Scholar 

  • Sheeley, N.R., Jr., R.A. Howard, M.J. Koomon, D.J. Michels, R. Schwennn, K.H. Muhlauser, and H. Rosenbauer, Coronal mass ejections and interplanetary shocks, J. Geophys. Res., 90, 163, 1985.

    Google Scholar 

  • Tsurutani, B.T., and C.I. Meng, Interplanetary magnetic field variations and substorm activity, J. Geophys. Res., 77, 2964, 1972.

    Google Scholar 

  • Tsurutani, B.T., C.T. Russell, J.H. King, R.D. Zwickl, and R.P. Lin, A kinky heliospheric current sheet: cause of CDAW 6 substorms, Geophys. Res. Lett., 11, 339, 1984.

    Google Scholar 

  • Tsurutani, B.T. and R.P. Lin, Acceleration of >47 KeV ions and >2 KeV electrons by interplanetary shocks at 1 AU, J. Geophys. Res., 90, 1, 1985.

    Google Scholar 

  • Tsurutani, B.T. and W.D. Gonzalez, The cause of high-intensity long-duration continuous AE activity (HILDCAAs): interplanetary Alfven wave trains, Planet. Space Sci., 35, 405, 1987.

    Google Scholar 

  • Tsurutani, B.T., W.D. Gonzalez, F. Tang, S.I. Akasofu, and E.J. Smith, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979), J. Geophys. Res., 93, 8519, 1988.

    Google Scholar 

  • Tsurutani, B.T., T. Gould, B. Goldstein, W.D. Gonzalez, and M. Sugiura, Interplanetary Alfven waves and auroral (substorm) activity IMP-8, J. Geophys. Res., 95, 2241, 1990.

    Google Scholar 

  • Tsurutani, B.T., W.D. Gonzalez, F. Tang, and Y. Te Lee, Superstdrms, Geophys. Res. Lett., in press, 1991.

    Google Scholar 

  • Vasyliunas, V.H., J.R.Kan, G.L. Siscoe, and S.I. Akasofu, Scaling relations governing magnetosphere energy transfer, Planet. Space Sci., 30, 359, 1982.

    Google Scholar 

  • Wygant, J.R., R.B. Torbert, and F.S. Mozer, Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection, J. Geophys. Res., 85, 5727, 1983.

    Google Scholar 

  • Zwan, B.J., and R.A. Wolf, Depletion of solar wind plasma near a planetary boundary, J. Geophys. Res., 81, 1636, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Zdeněk Švestka Bernard V. Jackson Marcos E. Machado

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Gonzalez, W.D., Tsurutani, B.T. (1992). Terrestrial response to eruptive solar flares: Geomagnetic storms. In: Švestka, Z., Jackson, B.V., Machado, M.E. (eds) Eruptive Solar Flares. Lecture Notes in Physics, vol 399. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55246-4_111

Download citation

  • DOI: https://doi.org/10.1007/3-540-55246-4_111

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55246-8

  • Online ISBN: 978-3-540-46794-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics