Skip to main content

The development of well-defined catalysts for ring-opening olefin metathesis polymerizations (ROMP)

  • Chapter
  • First Online:
Polymer Synthesis Oxidation Processes

Part of the book series: Advances in Polymer Science ((POLYMER,volume 102))

Abstract

The present article reviews the development of well-defined transition metal compounds which catalyze the ring-opening polymerization of strained cyclic olefins by the olefin metathesis reaction (ROMP). Several titana- and tantalacyclobutane compounds and tungsten- and molybdenum carbenes polymerize norbornene and norbornene derivatives by a “living” mechanisms, thus producing polymers of controlled molecular weights with narrow molecular weight distributions. Some of these systems have been successfully applied to the synthesis of block and graft copolymers. Studies on Ru-based catalysts resulted in the development of olefin metathesis polymerizations in aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4 References

  1. Anderson AW, Merckling NG (Du Pont) (1955) US Pat 2,721,189; (1956) Chem Abstr 50: 3008i

    Google Scholar 

  2. Ziegler (1952) Angew Chem 64: 323

    Google Scholar 

  3. Natta G, Pino P, Mazzanti G, Giannini U, Mantica E, Peraldo (1957) M Chim Ind Milan 39; 19

    Google Scholar 

  4. Natta G, Pino P, Mantica E, Danusso F, Mazzanti G, Peraldo M (1956) Chim Ind Milan 38: 124

    Google Scholar 

  5. Eleuterio HS, (Du Pont) (1961) Ger Pat 1,072,811 (1960); Chem Abstr 55: 16005

    Google Scholar 

  6. Truett WL, Johnson DR, Robinson IM, Montague, B A (1960) J Am Chem Soc 82, 2337

    Google Scholar 

  7. Dall'Asta G, Mazzanti G, Natta G, Porri L (1962) Makromol Chem 56, 224

    Google Scholar 

  8. Natta G, Dall'Asta G, Mazzanti G, Motroni G (1963) Makromol Chem 69, 163

    Google Scholar 

  9. Kormer VA, Yufa TL, Poletaeva IA (1969) Dokl Akad Nauk SSSR 185, 873.

    Google Scholar 

  10. Dall'Asta G, Motroni G, Motta L (1972) J Polym Sci, A-1, 10: 1601

    Google Scholar 

  11. Natta G, Dall'Asta G, Mazzanti G (1964) Angew Chem, Int Ed 3: 723

    Google Scholar 

  12. Alkema HJ, van Helden R (Shell) (1968) Brit Pat 1,117,968 Chem Abstr 69: 95906 (1968).

    Google Scholar 

  13. Höcker H, Musch R (1972) Makromol Chem 157: 201.

    Google Scholar 

  14. Reviews on Olefin Metathesis: Grubbs RH (1982) In: Wilkinson G (ed) Comprehensive organometallic chemistry, Pergamon, Oxford, vol 8, p 499

    Google Scholar 

  15. Dragutan V, Balaban AT, Dimonie M (1985) Olefin metathesis and ring-opening polymerization of cyclo-olefins, Wiley, Chichester

    Google Scholar 

  16. Ivin KJ (1983) Olefin metathesis, Academic, London

    Google Scholar 

  17. Calderon N, Chen HY, Scott KW (1967) Tetrahedron Lett 3327

    Google Scholar 

  18. Hughes WB (1972) Organomet Chem Synth 1: 341

    Google Scholar 

  19. Hérisson JL, Chauvin Y, Phung NH, Lefebvre GCR (1969) Hebd Seances Acad Sci, Ser C 269: 661

    Google Scholar 

  20. Uchida Y, Hidai M, Tatsumi T (1972) Bull Chem Soc Jpn 45: 1158

    Google Scholar 

  21. Ivin KJ, O'Donnell JH, Rooney JJ, Steward CD (1979) Makromol Chem 180: 1975

    Google Scholar 

  22. Grubbs RH, Swetnick SJ (1980) J Mol Catal 8: 25

    Google Scholar 

  23. Mol JC, Moulijn JA (1975) Adv Catal 24: 131

    Google Scholar 

  24. Sata H, Tanaka Y, Taketomi T (1977) Makromol Chem 178: 1993

    Google Scholar 

  25. Banks RL, Bailey GC (1964) Ind Eng Chem, Prod Res Dev 3: 170

    Google Scholar 

  26. Calderon N, Ofstead EA, Ward JP, Judy WA, Scott KW (1968) J Am Chem Soc 90: 4133

    Google Scholar 

  27. Bradshaw CPC, Howman EJ, Turner L (1967) J Catal 7: 269

    Google Scholar 

  28. Hérisson JL, Chauvin Y (1971) Makromol Chem 141: 161

    Google Scholar 

  29. Grubbs RH, Burk PI, Carr DD (1975) J Am Chem Soc 97, 3265

    Google Scholar 

  30. Grubbs RH, Carr DD, Hoppin C, Burk PI (1976) J Am Chem Soc 98: 3478

    Google Scholar 

  31. Katz TJ, Rothchild R (1976) J Am Chem Soc 98: 2519

    Google Scholar 

  32. Katz TJ, Lee SJ, Acton, N (1976) Tetrahedron Lett 4247

    Google Scholar 

  33. Soufflet J-P, Commereuc D, Chauvin YCR (1973) R Hebd Seances Acad Sci, Ser C 169

    Google Scholar 

  34. Muetterties EL (1975) Inorg Chem 14: 951

    Google Scholar 

  35. Grubbs RH, Hoppin CR (1977) J Chem Soc, Chem Commun 634

    Google Scholar 

  36. Scott KW, Calderon N, Ofstead EA, Judy WA, Ward JP (1969) Am Chem Soc, Adv Chem Ser 91: 399

    Google Scholar 

  37. Höcker H, Reimann W, Riebel K, Szentivanyi, Z (1976) Makromol Chem 177: 1707

    Google Scholar 

  38. Tanaka Y, Sato H, Hatada K, Terawaki Y (1977) Makromol Chem 178: 1823

    Google Scholar 

  39. Calderon N, Scott KW (Goodyear) (1981) Can Pat 1,095,646 Chem Abstr 95: 8034 (1981)

    Google Scholar 

  40. Syatkowsky AI, Denisova TT, Abramenko EL, Khatchaturov AS, Babitsky BD (1981) Polymer 22: 1554

    Google Scholar 

  41. Ivin KJ, Rooney JJ, Bencze L, Hamilton JG, Lam LM, Lapienis G, Reddy BSR, Ho HT (1982) Pure Appl Chem 54: 447

    Google Scholar 

  42. Jolly PW, Wilke G (1974) In: The organic chemistry of nickel, Academic Press: New York, Vol 2

    Google Scholar 

  43. Maitlis PM (1971) In: The organic chemistry of palladium, Academic: New York

    Google Scholar 

  44. Ephritikhine M, Green MLH, Mackenzie RE (1976) J Chem Soc, Chem Commun 619

    Google Scholar 

  45. Adam GJA, Davies SG, Ford KA, Ephritikhine M, Todd PF, Green MLH (1980) J Mol Catal 8: 15

    Google Scholar 

  46. Tebbe FN, Parshall GW, Reddy GSJ (1978) J Am Chem Soc 100: 3611

    Google Scholar 

  47. Tebbe FN, Parshall GW, Ovenall DW (1979) J Am Chem Soc 101: 5074

    Google Scholar 

  48. Howard TR, Lee JB, Grubbs RH (1980) J Am Chem Soc 102: 6878

    Google Scholar 

  49. Lee JB, Ott KC, Grubbs RH (1982) J Am Chem Soc 104: 7491

    Google Scholar 

  50. Ziegler K, Bähr K (1928) Chem Ber 61: 253

    Google Scholar 

  51. Ziegler K, Dersch F, Wollthan H (1934) Justus Liebigs Ann Chem 511: 13

    Google Scholar 

  52. Flory PJ (1940) J Am Chem Soc 62: 1561

    Google Scholar 

  53. Szwarc M, Levy M, Milkovich R (1956) J Am Chem Soc 78: 2656

    Google Scholar 

  54. Szwarc M (1983) Adv Polym Sci 49: 1

    Google Scholar 

  55. Gilliom LR, Grubbs RH (1986) J Am Chem Soc 108: 733

    Google Scholar 

  56. Gilliom LR, Grubbs RH (1986) Organometallics 5: 721

    Google Scholar 

  57. Cannizzo LF, Grubbs RH (1987) Macromolecules 20: 1488

    Google Scholar 

  58. Cannizzo LF, Grubbs RH (1988) Macromolecules 21: 1961

    Google Scholar 

  59. Risse W, Grubbs RH (1989) Macromolecules 22: 1558

    Google Scholar 

  60. Risse W, Grubbs RH (1989) Macromolecules 22: 4462

    Google Scholar 

  61. Tumas W, Wheeler DR, Grubbs RH (1987) J Am Chem Soc 109: 6182

    Google Scholar 

  62. Risse W, Wheeler DR, Cannizzo LF, Grubbs RH (1989) Macromolecules 22: 3205

    Google Scholar 

  63. Stelzer F, Park JW, Risse W, Grubbs RH (unpublished results)

    Google Scholar 

  64. Tritto I, Grubbs RH (1990) Proceedings of the international symposium on recent developments in olefin polymerization catalysts; Kodansha, Tokyo pp 301–312

    Google Scholar 

  65. Wallace KC, Dewan JC, Schrock RR (1986) Organometallics 5: 2162

    Google Scholar 

  66. Wallace KC, Schrock RR (1987) Macromolecules 20: 450

    Google Scholar 

  67. Wallace KC, Liu AH, Dewan JC, Schrock RR (1988) J Am Chem Soc 110: 4964

    Google Scholar 

  68. Schrock RR, Feldman J, Cannizzo LF, Grubbs RH (1987) Macromolecules 20: 1169

    Google Scholar 

  69. Cannizzo LF (1988) PhD Thesis, California Institute of Technology

    Google Scholar 

  70. Schaverien CJ, Dewan JC, Schrock RR (1986) J Am Chem Soc 108: 2771

    Google Scholar 

  71. Schrock RR, DePue RT, Feldman J, Schaverien CJ, Dewan JC, Liu, AH (1988) J Am Chem Soc 110: 1423

    Google Scholar 

  72. Bauch CG, Wagener KB, Boncella JM 377

    Google Scholar 

  73. Wagener KB, Puts RD, 379

    Google Scholar 

  74. Brzezinska K, Wagener KB, 381

    Google Scholar 

  75. Wagener KB, Smith jr DW 373

    Google Scholar 

  76. Wagener KB, Konzelmann J 375

    Google Scholar 

  77. Johnson LK, Virgil SC, Grubbs RH (1990) J Am Chem Soc 112: 5384

    Google Scholar 

  78. Wu Z, Grubbs submitted to J Am Chem Soc

    Google Scholar 

  79. Murdzek JS, Schrock RR (1987) Macromolecules 20: 2640

    Google Scholar 

  80. Schrock RR (1990) Acc Chem Res 23: 158

    Google Scholar 

  81. Bazan GC, Khosravi E, Schrock RR, Feast WJ, Gibson VC, O'Regan MB, Thomas JK, Davies WM (1990) J Am Chem Soc 112: 8378

    Google Scholar 

  82. Crowe WE, Mitchell JP, Gibson VC, Schrock RR (1990) Macromolecules 23: 3536

    Google Scholar 

  83. Aguero A, Kress J, Osborn JA (1985) J Chem Soc Chem Commun 793

    Google Scholar 

  84. Quignard F, Leconte M, Basset JM (1985) J Chem Soc, Chem Commun 1816

    Google Scholar 

  85. Quignard F, Leconte M, Basset JM (1986) J Mol Catal 36: 13

    Google Scholar 

  86. Quignard F, Leconte M, Basset JM (1985) J Mol Catal 28: 27

    Google Scholar 

  87. Kress J, Osborn JA, Greene RME, Ivin KJ, Rooney JJ (1985) J Chem Soc, Chem Commun 874

    Google Scholar 

  88. Novak BM, Grubbs RH (1988) J Am Chem Soc 110: 960

    Google Scholar 

  89. Kress J, Osborn JA (1983) J Am Chem Soc 105: 6346

    Google Scholar 

  90. Kress J, Osborn JA, Greene RME, Ivin KJ, Rooney JJ, (1987) J Am Chem Soc 109: 899

    Google Scholar 

  91. Greene RME, Ivin KJ, Rooney JJ, Kress J, Osborn J (1988) Makromol Chem 189: 2797

    Google Scholar 

  92. Korshak YV, Korshak V, Kansichka G, Hocker H (1985) Makromol Chem, Rapid Commun 6: 685

    Google Scholar 

  93. Klavetter FL, Grubbs RH (1988) J Am Chem Soc 110: 7807

    Google Scholar 

  94. Shirakawa H, Ikeda S (1971) Polym J (Tokyo) 2: 231

    Google Scholar 

  95. Ginsburg EJ, Gorman CB, Marder SR, Grubbs RH (1989) J Am Chem Soc 111: 7621

    Google Scholar 

  96. Gorman CB, Ginsburg EJ, Marder SR, Grubbs RH (1990) Polym Prepr 31 (1): 386

    Google Scholar 

  97. Ginsburg EJ, Gorman CB, Sailor MJ, Lewis NS, Brubbs RH (1990) In: Olefin metathesis and polymerization catalysts, Imamoglu Y (ed), Kluwer, Dordrecht, Netherlands p 537

    Google Scholar 

  98. Sailor MJ, Ginsburg EJ, Gorman CB, Kumar A, Grubbs RH, Lewis NS (1990) Science 249: 1146

    Google Scholar 

  99. Moore JS, Gorman CB, Grubbs RH (1991) J Am Chem Soc 113: 1704

    Google Scholar 

  100. Edwards JH, Feast WJ (1987) Polym J 28: 567

    Google Scholar 

  101. Swager TM, Grubbs RH, Doughtery DA (1988) J Am Chem Soc 110: 2973

    Google Scholar 

  102. Swager TM, Grubbs RH (1989) J Am Chem Soc 111: 4413

    Google Scholar 

  103. For a general overview of Ziegler-Natta polymerizations of functionalized substrates see: Boor J In: Ziegler-natta catalysts and polymerizations, Academic, New York: 1979

    Google Scholar 

  104. Parshall GW In: Homogeneous Catalysis; Wiley, New York, 1980

    Google Scholar 

  105. Vandenberg (1963) J Polym Sci C1, 207

    Google Scholar 

  106. Kuntz, EG CHEMTECH 1987, 570

    Google Scholar 

  107. Chung TC (1988) Macromolecule 21: 865

    Google Scholar 

  108. For references on the metathesis of polar substrates (both cyclic and acyclic) see: Murdzek JS, Schrock RR (1987) Macromolecules 20: 2640

    Google Scholar 

  109. van Dam PD, Mittelmijer MC, Boelhouwer C (1972) J Chem Soc, Chem Commun 1221

    Google Scholar 

  110. Mol JC (1982) J Mol Catal 15: 35

    Google Scholar 

  111. Matsumoto S, Komatsu K, Igarashi K (1977) Am Chem Soc, Polym Preprints 18: 110

    Google Scholar 

  112. Matsumoto S, Komatsu, K, Igarashi K (1977) Am Chem Soc, Polym Preprints, 18: 110

    Google Scholar 

  113. Novak BM, Grubbs RH (1987) Proc Am Chem Soc Div PMSE 57: 651

    Google Scholar 

  114. Saegusa T, Matsumoto S, Motoi M, Fuji H (1972) Macromolecules 5: 236

    Google Scholar 

  115. Kops J, Spanggaard H (1972) Makromol Chem 151: 21

    Google Scholar 

  116. Michelotti FW, Keaveney WP (1963) Am Chem Soc, Polym Preprints 4: 293

    Google Scholar 

  117. Michelotti FW, Keaveney WP (1965) J Polym Sci A-3: 895

    Google Scholar 

  118. Michelotti FW, Carter JH (1965) Am Chem Soc, Polym Preprints 6: 224

    Google Scholar 

  119. Ho HT, Ivin KJ, Rooney JJ (1982) J Mol Catal 15: 245

    Google Scholar 

  120. Porri L, Diversi P, Lucherini A, Rossi R (1975) Makromol Chem 176: 3131

    Google Scholar 

  121. Porri L, Rossi R, Diversi P, Lucherini A (1974) Makromol Chem 175: 3097

    Google Scholar 

  122. The induction period is defined as the time elapsed from the initial mixing and heating of the reaction mixture until the initial polymer formation

    Google Scholar 

  123. Novak BM, Grubbs RH (1988) J Am Chem Soc 110: 7542

    Google Scholar 

  124. Breslow DS, Newberg NR (1957) J Am Chem Soc 79: 5072

    Google Scholar 

  125. Breslow DS, Newberg NR (1959) J Am Chem Soc 81: 81

    Google Scholar 

  126. Anderson A, Cordes HG, Herwig J, Kaminsky W, Merck A, Mottweiler R, Pein J, Sinn H, Vollmer HJ (1976) Angew Chem 88: 689

    Google Scholar 

  127. Kaminsky W, Miri M, Sinn H, Wold R (1983) Makromol Chem, Rapid Commun 4: 417

    Google Scholar 

  128. Adema EH, Bartelink HJM, Smidt, J (1961) Rec. Trav Chim 80: 173

    Google Scholar 

  129. Ivin KJ, Reddy BSR, Rooney JJ (1981) J Chem Soc, Chem Commun 1062

    Google Scholar 

  130. Uchida Y, Hidai M, Tatsumi T (1972) Bull chem Soc Jpn 45: 1158

    Google Scholar 

  131. Early attempts at emulsion ROMP systems have been reported. These systems, however, either fail for many monomers or, at best, give low yields of polymer (typically less than 9%). See: Rinehart RH, Smith HP (1965) J Polym Sci, Polym Lett 3: 1049

    Google Scholar 

  132. Schrock RR, Yap KB, Yang DC, Sitzmann H, Sita LR, Bazan GC (1989) Macromolecules 22: 3191

    Google Scholar 

  133. Sullivan BP, Baumann JA, Meyer TJ, Salmon DJ, Lehmann H, Ludi A (1977) J Am Chem Soc 99: 7368

    Google Scholar 

  134. Novak BM, Grubbs RH J Am Chem Soc Submitted for Publication

    Google Scholar 

  135. Seddon KR, Seddon EA In: Chemistry of ruthenium, Elsevier, New York: 1984

    Google Scholar 

  136. Novak BM, Grubbs RH Macromolecules, Submitted for Publication

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this chapter

Cite this chapter

Novak, B.M., Risse, W., Grubbs, R.H. (1992). The development of well-defined catalysts for ring-opening olefin metathesis polymerizations (ROMP). In: Polymer Synthesis Oxidation Processes. Advances in Polymer Science, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55090-9_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-55090-9_2

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55090-7

  • Online ISBN: 978-3-540-46690-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics