Skip to main content

Artificial photosynthetic model systems using light-induced electron transfer reactions in catalytic and biocatalytic assemblies

  • Conference paper
  • First Online:
Photoinduced Electron Transfer III

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 159))

Abstract

Artificial photosynthetic devices provide a means for the use of solar light in generating fuel materials and valuable chemicals and for the removal of environmental pollutants. Control of photosensitized electron transfer reactions and development of catalysts for utilizations of the intermediate electron transfer products are essential aspects in designing artificial photosynthetic systems. Homogeneous and heterogeneous catalysts as well as biocatalysts (enzymes and cofactors) can be coupled to photochemically induced electron transfer reactions and effect photosynthetic transformations such as hydrogen evolution, CO2-fixation, hydrogenation, and hydroformylation processes. The progress in tailoring artificial photosynthetic devices in the context of thermodynamic and kinetic limitations of such systems is described. Integrated systems, where catalytic performance and control of electron transfer reactions which occur in organized assemblies are specifically emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

9 References

  1. Bockris JO'M (ed) (1980) Energy options, Halsted Press Wiley, New York

    Google Scholar 

  2. McVeigh JC (ed) (1989) Energy around the world, Pergamon Press, Oxford

    Google Scholar 

  3. IEA/OECD (1982) World energy outlook, The International Energy Agency and Organization of Economic Cooperation and Development, Paris

    Google Scholar 

  4. Eddi J (1977) In: White OR (ed) The solar output and its variation, Colorado Univ Press, Boulder, p 33

    Google Scholar 

  5. Gibbs M (ed) (1971) Structure and functions of chloroplasts, Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  6. Gregory RPF (1977) Biochemistry of photosynthesis, Wiley-Interscience, New York

    Google Scholar 

  7. Calvin M (1974) Science 184: 375

    Google Scholar 

  8. Hall DO, Rao KK (1987) Photosynthesis, Edward Arnold, London

    Google Scholar 

  9. Clayton RK (1980) Photosynthesis: Physical mechanisms and chemical patterns, Cambridge Univ Press, Cambridge

    Google Scholar 

  10. Vol'pin ME, Kolomnikov IS (1973) Pure Appl Chem, 33: 567

    Google Scholar 

  11. Clark WC (ed) (1982) Carbon dioxide review, Oxford University Press, Oxford

    Google Scholar 

  12. Behr A (1988) Angew Chem, Int Ed Engl, 27: 661

    Google Scholar 

  13. Wigley TML, Jones PD (1981) Nature (London), 292: 205

    Google Scholar 

  14. Deutscher Bundestag, Bonn (1989) Protecting the earth's atmosphere. An international challenge p 351

    Google Scholar 

  15. Lemons J (1985) J Environ Sci, 28: 60

    Google Scholar 

  16. Balzani V, Scandola F (1981) In: Connolly JS (ed) Photochemical conversion and storage of solar energy, Academic Press, New York, p 97

    Google Scholar 

  17. Sutin N, Creutz C (1978) Adv Chem Ser, 168: 1

    Google Scholar 

  18. Marcus RA (1964) Ann Rev Phys Chem, 15: 155

    Google Scholar 

  19. Marcus RA (1981) Int J Chem Kinet, 13: 865

    Google Scholar 

  20. Rehm D, Weller A (1970) Isr J Chem, 8: 259

    Google Scholar 

  21. Rips I, Jortner J (1987) J Chem Phys, 87: 2090 (1988); 88: 818

    Google Scholar 

  22. Brunschwig B, Logan J, Newton MD Sutin, N (1980) J Am Chem Soc, 102: 5798

    Google Scholar 

  23. Mataga N (1984) Pure Appl Chem, 56: 1255

    Google Scholar 

  24. McLendon G (1988) Acc Chem Res, 21: 160

    Google Scholar 

  25. Scott RA, Mauk AG, Gray HB (1985) J Chem Educ, 62: 932

    Google Scholar 

  26. Sutin N (1979) J Photochem, 10: 19

    Google Scholar 

  27. Pileni M-P, Grätzel M (1980) J Phys Chem, 84: 2402

    Google Scholar 

  28. Krasna AI (1979) Photochem Photobiol, 29: 267

    Google Scholar 

  29. Darwent JR, Douglas P, Harriman A, Porter G, Richoux M-C (1982) Coord Chem Rev, 44: 83

    Google Scholar 

  30. Harriman A (1985) J Photochem, 29: 139

    Google Scholar 

  31. Harriman A, Porter G, Richoux M-C (1980) J Chem Soc, Faraday Trans 2, 76: 1618

    Google Scholar 

  32. Kalyanasundaram K (1982) Coord Chem Rev, 46: 159

    Google Scholar 

  33. Meyer TJ (1986) Pure Appl Chem, 58: 1193

    Google Scholar 

  34. Balzani V, Bolleta F, Gandolfi MT, Maetri M (1978) Top Curr Chem, 75: 1

    Google Scholar 

  35. Juris A, Barigelleti F, Campagna S, Balzani V, Belser P, von Zelewsky A (1988) Coord Chem Rev, 84: 85

    Google Scholar 

  36. Ferguson J, Herren F, Krausz ER, Vrbanich J (1985) Coord Chem Rev, 64: 21

    Google Scholar 

  37. Bard AJ (1980) Science (Washington DC), 207: 139

    Google Scholar 

  38. Meyer TJ (1989) Acc Chem Res, 22: 163

    Google Scholar 

  39. Willner I, Mandler D, Maidan R (1987) Nouv J Chim, 11: 109

    Google Scholar 

  40. Bolton JR (1978) Science, 202: 705

    Google Scholar 

  41. Bolton JR, Strickler SJ, Connolly JS (1985) Nature, 316: 496

    Google Scholar 

  42. Scharf H-D, Fleischlauer J, Leismann H, Ressler I, Schleker W, Weitz R (1979) Angew Chem, Int Ed Engl, 18: 652

    Google Scholar 

  43. Bolton JR, Haught AF, Ross RT (1981) In: Connoly JS (ed) Photochemical conversion and storage of solar energy, Academic Press, New York, p 297

    Google Scholar 

  44. Bockris JO'M, Dandapani B, Cocke D, Ghoroghchian J (1985) Int J Hydrogen Energy, 10: 179

    Google Scholar 

  45. Grätzel M (ed) (1983) Energy resources through photochemistry and catalysis, Academic Press, New York

    Google Scholar 

  46. Harriman A, West ME (ed) (1983) Photogeneration of hydrogen, Academic Press, London

    Google Scholar 

  47. Willner I, Goren Z, Mandler D, Maidan R, Degani Y (1985) J Photochem, 28: 215

    Google Scholar 

  48. Willner I (1985) In: Fox MA (ed) Organic phototransformations in nonhomogeneous media, ACS Symp Series No 278, Am Chem Soc Washington DC, p 191

    Google Scholar 

  49. Turro N, Grätzel M, Braun AM (1980) Angew Chem, Int Ed Engl, 19: 675

    Google Scholar 

  50. Matsuo T, Takama K, Tsutsui Y, Nishizima TJ (1980) Coord Chem Rev, 10: 195

    Google Scholar 

  51. Thomas JK (1980) Chem Rev, 80: 283

    Google Scholar 

  52. Fendler JH (1987) Chem Rev, 87: 877

    Google Scholar 

  53. Sassoon RE, Rabani J (1980) J Phys Chem, 84: 1319

    Google Scholar 

  54. Meyerstein D, Rabani J, Matheson MS, Meisel D (1978) J Phys Chem, 82: 1879

    Google Scholar 

  55. Willner I, Yang JM, Otvos JW, Calvin M (1981) J Phys Chem, 85: 3277

    Google Scholar 

  56. Willner I, Otvos JW, Calvin M (1981) J Am Chem Soc, 103: 3203

    Google Scholar 

  57. Willner I, Degani Y (1982) Isr J Chem, 22: 163

    Google Scholar 

  58. Dellaguardia R, Thomas JK (1983) J Phys Chem, 87: 990

    Google Scholar 

  59. Dellaguardia R, Thomas JK (1984) J Phys Chem, 88: 964

    Google Scholar 

  60. Mandler D, Degani Y, Willner I (1984) J Phys Chem, 88: 4366

    Google Scholar 

  61. Pileni M-P (1980) Chem Phys Lett, 75: 540

    Google Scholar 

  62. Jones CA, Weaver LE, Mackay RA (1980) J Phys Chem, 84: 1495

    Google Scholar 

  63. Atik SS, Thomas JK (1981) J Am Chem Soc, 103: 7403

    Google Scholar 

  64. Infelta PP, Grätzel M, Fendler JH (1980) J Am Chem Soc, 102: 1479

    Google Scholar 

  65. Tumuli MS, Fendler JH (1981) J Am Chem Soc, 103: 2507

    Google Scholar 

  66. Adar E, Degani Y, Goren Z, Willner I (1986) J Am Chem Soc, 108: 4696

    Google Scholar 

  67. Kalyanasundaram K (1987) Photochemistry in microheterogeneous systems, Academic Press, London

    Google Scholar 

  68. Fendler JH (1985) J Phys Chem, 89: 2730

    Google Scholar 

  69. Laane C, Willner L, Otvos JW, Calvin M (1981) Proc Natl Acad Sci USA, 78: 5928

    Google Scholar 

  70. Brugger P-A, Grätzel M (1980) J Am Chem Soc, 102: 2461

    Google Scholar 

  71. Brugger P-A, Infelta PP, Braun AM, Grätzel M (1981) J Am Chem Soc, 103: 320

    Google Scholar 

  72. Willner I, Adar E, Goren Z, Steinberger B (1987) Nouv J Chim, 11: 769

    Google Scholar 

  73. Denise B, Sneeden RPA (1982) Chemtech 108

    Google Scholar 

  74. Bard AJ (ed) (1976) Encyclopedia of the electrochemistry of the elements, Dekker, New York

    Google Scholar 

  75. Bond GC (1974) Heterogeneous catalysis: Principles and applications, Oxford University Press, London

    Google Scholar 

  76. Pearce R, Patterson WR (ed) (1981) Catalysis and chemical processes, Blackie and Son, London

    Google Scholar 

  77. Somorjai GA (1981) Chemistry in two dimensions: Surfaces, Cornell University, New York

    Google Scholar 

  78. Somorjai GA (1988) Pure Appl Chem, 60: 1499

    Google Scholar 

  79. Thomas JM (1988) Pure Appl Chem, 60: 1517

    Google Scholar 

  80. Delmon B, Jacobs, P, Poncelet G (eds) (1976) Preparation of catalysts, Vol 1, Elsevier, New York

    Google Scholar 

  81. Henglein A (1988) Top Curr Chem, 143: 113

    Google Scholar 

  82. Harriman A (1983) Platinum Metals Rev, 102

    Google Scholar 

  83. Iwasawa Y (ed) (1986) Tailored metal catalysts, Reidel Publ. Co., Dordrecht, Holland

    Google Scholar 

  84. Rampino LD, Nord FF (1941) J Am Chem Soc, 63: 2745

    Google Scholar 

  85. Turkevich J, Miner RS, Babenkova L (1986) J Phys Chem, 90: 4765

    Google Scholar 

  86. Gutbier A (1902) Z Anorg Chem, 32: 347

    Google Scholar 

  87. Hirai H, Ohtaki M, Komiyama M (1986) Chem Lett, 269

    Google Scholar 

  88. Delcourt MP, Keghouche N, Belloni J (1983) Nouv J Chim, 7: 131

    Google Scholar 

  89. Kimura K, Bandow S (1983) Bull Chem Soc Jpn, 56: 3578

    Google Scholar 

  90. Furlong DN, Launikonis A, Sasse WHF, Sanders JK (1984) J Chem Soc, Faraday Trans 1, 80: 571

    Google Scholar 

  91. Kiwi J, Grätzel M (1979) J Am Chem Soc, 101: 7214

    Google Scholar 

  92. Davis SM, Somoraji GA (1982) In: Ding DA, Woodroff DP (eds) The Chemical physics of solid surfaces and heterogeneous catalysis, Elsevier, Amsterdam, Vol 4, p 294

    Google Scholar 

  93. Tomsett AD, Hagiwara T, Miyamoto A, Inui T (1986) Appl Catal, 26: 391

    Google Scholar 

  94. Palmer DA, van Eldik R (1983) Chem Rev, 83: 651

    Google Scholar 

  95. Darensbourg DJ, Kudaroski RA (1983) Adv Organomet Chem, 22: 129

    Google Scholar 

  96. Eisenberg R, Hendriksen DE (1979) Adv Catalysis, 28: 79

    Google Scholar 

  97. Darensbourg DJ, Bauch CG, Ovalles C (1988) In: Ayers WM (ed) Catalytic activation of carbon dioxide, ACS Symposium Series 363, Am Chem Soc, Washington DC, p 26

    Google Scholar 

  98. Ibero JA (1987) In: Aresta M, Forti G (eds) Carbon Dioxide as a Source of Carbon: Biochemical and Chemical Uses, NATO ASI Series C206, Reidel, Dordrecht, p 55

    Google Scholar 

  99. Sneeden RPA (1982) In: Wilkinson G (ed) Comprehensive organometallic chemistry, Pergamon, Oxford, Vol 8, p 225

    Google Scholar 

  100. Vol'pin ME, Kolomnikov IS (1975) Organomet React, 5: 313

    Google Scholar 

  101. Suckling CJ (ed) (1984) Enzyme chemistry: Impact and applications, Chapman Hall, London

    Google Scholar 

  102. Klibanov AM (1983) Science, 219: 722

    Google Scholar 

  103. Whitesides GM, Wong C-H (1985) Angew Chem, Int Ed engl, 24: 617

    Google Scholar 

  104. Wagner AF, Folker K (1964) Vitamins and coenzymes, Interscience Publ, New York

    Google Scholar 

  105. Lowe JN, Ingraham LL (1974) An introduction to biochemical reaction mechanisms, Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  106. Walsh C (1980) Acc Chem Res, 13: 148

    Google Scholar 

  107. Guirard BM, Snell EE (1964) Comprehen Biochem, 15: 138

    Google Scholar 

  108. Reed LJ (1967) Comprehen Biochem, 14: 99

    Google Scholar 

  109. Hay RW (1984) Bio-inorganic Chemistry, Wiley, New York

    Google Scholar 

  110. Hutchinson DW (1964) In: Nucleotides and Coenzymes, Wiley, New York

    Google Scholar 

  111. Walsh C (1979) In: Enzymatic Reaction Mechanism, Freeman, San Francisco

    Google Scholar 

  112. Siegel HW, Hind G (1978) Photosynthetic carbon assimilation, Plenum, New York

    Google Scholar 

  113. Willner I, Mandler D (1989) Enzyme Microb Technol, 11: 467

    Google Scholar 

  114. Degani Y, Heller A (1989) J Am Chem Soc, 111: 2357

    Google Scholar 

  115. Degani Y, Heller A (1988) J Am Chem Soc, 110: 2615

    Google Scholar 

  116. Pishko MV, Katakis I, Lindquist S-E, Ye L, Gregg BA, Heller A (1990) Angew Chem, Int Ed Engl, 29: 82

    Google Scholar 

  117. Willner I, Lapidot N, Riklin A (1990) J Am Chem Soc, 112: 6438

    Google Scholar 

  118. Schumacher E (1978) Chimia, 32: 193

    Google Scholar 

  119. Serpone N (1989) In Norris JR, Jr Meisel D (eds) Photochemical energy conversion, Elsevier, New York, p 297

    Google Scholar 

  120. Willner I, Steinberger-Willner B (1988) Int J Hydrogen Energy, 13: 593

    Google Scholar 

  121. Zamarev KI, Parmon VN (1980) Catal Rev, 22: 261

    Google Scholar 

  122. Kople K, Meyerstein D, Meisel D (1979) J Phys Chem, 84: 870

    Google Scholar 

  123. Koryakin BV, Dzhabiev TS, Shilov AE (1977) Dokl Akad Nauk SSSR, 238: 620

    Google Scholar 

  124. Henglein A, Lilie J (1981) J Am Chem Soc, 103: 1059

    Google Scholar 

  125. Frank AJ, Stevenson KL (1981) J Chem Soc, Chem Commun, 593

    Google Scholar 

  126. Rafaeloff R, Haruvy Y, Binenboym J, Baruch B, Rajbenbach LA (1983) J Mol Catal, 22: 219

    Google Scholar 

  127. Kiwi J, Grätzel M (1979) Nature (London), 281: 657

    Google Scholar 

  128. Keller P, Moradpour A (1980) J Am Chem Soc, 102: 7193

    Google Scholar 

  129. Miller D, McLendon G (1981) Inorg Chem, 20: 950

    Google Scholar 

  130. Richoux M-C, Hall DO (1980) Photobiochem. Photobiophys, 1: 375

    Google Scholar 

  131. Lay PP, Mau AWH, Sasse WHF, Creaser I, Gahan LR, Sargeson AM (1983) Inorg Chem, 22: 2349

    Google Scholar 

  132. Kirch M, Lehn J-M, Sauvage J-P (1979) Helv Chim Acta, 62: 1345

    Google Scholar 

  133. Koryakin BV, Dzhabiev TS, Shilov AE (1977) Dokl Acad Nauk SSSR, 298: 620

    Google Scholar 

  134. McLendon G in ref 45, ( p 99

    Google Scholar 

  135. Rabani J, Fessenden RW, Sassoon RE (1988) J Phys Chem, 92: 2379

    Google Scholar 

  136. Degani Y, Willner I (1983) J Am Chem Soc, 105: 6228

    Google Scholar 

  137. Willner I, Eichen Y, Joselevich E (1990) J Phys Chem, 94: 3092

    Google Scholar 

  138. Infelta PP, Brugger PA (1981) Chem Phys Lett, 82: 462

    Google Scholar 

  139. Grätzel M, Kalyanasundaram K, Kiwi J (1982) Structure and Bonding, Berlin, 49: 37

    Google Scholar 

  140. Degani Y, PhD Thesis, (1985) The Hebrew University of Jerusalem, Jerusalem, Israel

    Google Scholar 

  141. Degani Y, Willner I (1986) J Chem Soc, Perkin Trans 2, 981

    Google Scholar 

  142. Tan C-K, Newberry V, Webb TR, McAuliffe CA (1987) J Chem Soc, Dalton Trans, 1299

    Google Scholar 

  143. Mandler D, Willner I (1987) J Phys Chem, 91: 3600

    Google Scholar 

  144. Grätzel M (1980) Ber Bunsenges, Phys Chem, 84: 981

    Google Scholar 

  145. Kalyanasundaram K, Grätzel M (1979) Angew Chem, Int Ed Engl, 18: 701

    Google Scholar 

  146. Amouyal E, Zidler B (1982) Isr J Chem, 22: 117

    Google Scholar 

  147. Borgarello E, Kiwi J, Pelizzetti E, Visca M, Grätzel M (1981) Nature (London), 289: 158

    Google Scholar 

  148. Magliozzo RS, Krasna AI (1983) Photochem Photobiol, 38: 15

    Google Scholar 

  149. Mills A, Lawrence C, Enos R (1984) J Chem Soc, Chem Commun, 1436

    Google Scholar 

  150. Mills A, Giddings S, Patel I, Lawrence C (1987) J Chem Soc, Faraday Trans 1, 83: 2331

    Google Scholar 

  151. Keller P, Moradpour A, Amouyal E (1982) J Chem Soc, Faraday Trans 1, 78: 3331

    Google Scholar 

  152. Nahor GS, Mosseri S, Neta P, Harriman A (1988) J Phys Chem, 92: 4499

    Google Scholar 

  153. Shafirovich VYa, Khannanov NK, Strelets VV (1980) Nouv J Chim, 4: 81

    Google Scholar 

  154. Shafirovich VYa, Khannanov NK, Shilov AE (1981) J Inorg Biochem, 15: 113

    Google Scholar 

  155. Shafirovich VYa, Shilov AE (1988) Isr J Chem, 83: 149

    Google Scholar 

  156. Brown GM, Brunschwig BS, Creutz C, Endicott JF, Sutin N (1979) J Am Chem Soc, 101: 1298

    Google Scholar 

  157. Krishnan CV, Creutz C, Mahajan D, Schwarz HA, Sutin N (1982) Isr. J Chem, 22: 98

    Google Scholar 

  158. Oishi S (1987) J Mol Catal, 39: 225

    Google Scholar 

  159. Willner I, Maidan R (1988) J Chem Soc, Chem Commun, 876

    Google Scholar 

  160. Willner I, Maidan R, Lapidot N: Unpublished results

    Google Scholar 

  161. Gray HB, Maverick AW (1981) Science, 214: 1201

    Google Scholar 

  162. Maverick AW, Gray HB (1980) Pure Appl Chem, 52: 2339

    Google Scholar 

  163. Maverick AW, Najdzionek JS, MacKenzie D, Nocera DG, Gray HB (1983) J Am Chem Soc, 105: 1878

    Google Scholar 

  164. Maverick AW, Che CM, Nocera DG, Winkler JR, Gray HB (1982) In: Rabani, J (ed) Photochem Convers Storage Sol Energy, Int Conf, 4th, Weizmann Science Press, Jerusalem, Israel, Vol A, p 161

    Google Scholar 

  165. Asada K (1982) In: Inoue S, Yamazaki N (eds) Organic and Bio-organic Chemistry of Carbon Dioxide, Kodanska, Tokyo

    Google Scholar 

  166. Keene FR, Creutz C, Sutin N (1985) Coord Chem Rev, 64: 247

    Google Scholar 

  167. Kudo K, Sugita N, Takezaki Y (1977) Nippon Kagaku Kaishi, 302

    Google Scholar 

  168. Stalder CJ, Chao S, Summers DP, Wrighton MS (1983) J Am Chem Soc, 105: 6318

    Google Scholar 

  169. Solymosi F, Erdohelyi A, Lancz M (1985) J Catal, 95: 567

    Google Scholar 

  170. Solymosi F, Erdohelyi A, Kocsis M (1981) J Chem Soc, Faraday Trans 1, 177: 1003

    Google Scholar 

  171. Willner I, Mandler D (1987) J Am Chem Soc, 109: 7884

    Google Scholar 

  172. Willner I, Mandler D (1989) J Am Chem Soc, 111: 1330

    Google Scholar 

  173. Maidan R, Willner I (1986) J Am Chem Soc, 108: 8100

    Google Scholar 

  174. Willner I, Maidan R, Mandler D, Dürr H, Dörr G, Zengerle K (1987) J Am Chem Soc, 109: 6080

    Google Scholar 

  175. Ayers WM (ed) (1988) Catalytic activation of carbon dioxide, ACS Symposium Series 363, Am Chem Soc, Washington DC

    Google Scholar 

  176. Frese KW, Leach S (1985) J Electrochem Soc, 132: 259

    Google Scholar 

  177. Summers DP, Frese KW (1988) Langmuir, 4: 51

    Google Scholar 

  178. Lehn J-M, Ziessel R (1982) Proc Natl Acad Sci USA, 79: 701

    Google Scholar 

  179. Ziessel R, Hawecker J, Lehn J-M (1986) Helv Chim Acta, 69: 1065

    Google Scholar 

  180. Ziessel R (1983) Nouv J Chim, 7: 613

    Google Scholar 

  181. Tinnemans AHA, Koster TPM, Thewissen DHMW, Mackor A (1984) Recl Trav Chim Pays-Bas, 103: 288

    Google Scholar 

  182. Grant JL, Goswami K, Spreer LO, Otvos JW, Calvin M (1987) J Chem Soc, Dalton Trans, 2105

    Google Scholar 

  183. Hawecker J, Lehn J-M, Ziessel R (1986) Helv Chim Acta, 69: 1990

    Google Scholar 

  184. Kutal C, Weber MA, Ferraudi G, Geiger D (1985) Organometallics, 4: 2161

    Google Scholar 

  185. Kutal C, Corbin AJ, Ferraudi G (1987) Organometallics, 6: 553

    Google Scholar 

  186. Hawecker J, Lehn J-M, Ziessel R (1985) J Chem Soc, Chem Commun, 56

    Google Scholar 

  187. Ishida H, Tanaka K, Tanaka T (1987) Chem Lett, 1035

    Google Scholar 

  188. Ishida H, Terada T, Tanaka K, Tanaka T (1990) Inorg Chem, 29: 905

    Google Scholar 

  189. Mandler D, Willner I (1984) J Am Chem Soc, 106: 5352

    Google Scholar 

  190. Mandler D, Willner I (1986) J Chem Soc, Perkin Trans 2: 805

    Google Scholar 

  191. Willner I, Maidan R, Willner B (1989) Isr J Chem, 29: 289

    Google Scholar 

  192. Mandler D, Willner I (1986) J Chem Soc, Chem Commun, 851

    Google Scholar 

  193. Weinkamp R, Steckhan E (1983) Angew Chem, Int Ed Engl, 22: 497

    Google Scholar 

  194. Willner I, Maidan R, Shapira M (1990) J Chem Soc, Perkin Trans 2: 559

    Google Scholar 

  195. Steckhan E (1987) Top Curr Chem, 142: 1

    Google Scholar 

  196. Julliard M, Le Petit J (1982) Photochem Photobiol, 36: 283

    Google Scholar 

  197. Chambers RP, Ford JR, Allender JH, Baricos WH, Cohen W (1974) Enz Eng, 2: 195

    Google Scholar 

  198. Handman J, Harriman A, Porter G (1984) Nature, 307: 534

    Google Scholar 

  199. Willner I, Mandler D, Riklin A (1986) J Chem Soc, Chem Commun, 1022

    Google Scholar 

  200. Mandler D, Willner I (1988) J Chem Soc, Perkin Trans 2: 997

    Google Scholar 

  201. Okura I (1985) Coord Chem Rev, 68: 53

    Google Scholar 

  202. Okura I, Aono S, Kusunoki S (1983) Inorg Chim Acta, 71: 77

    Google Scholar 

  203. Kinumi Y, Okura I (1989) J Mol Catal, 52: L33

    Google Scholar 

  204. Böger P (1978) Naturwissenschaften, 65: 407

    Google Scholar 

  205. Willner I, Lapidot N, Riklin A (1989) J Am Chem Soc, 111: 1883

    Google Scholar 

  206. Heller A (1981) Acc Chem Res, 14: 154

    Google Scholar 

  207. Wrighton MS (1985) Pure Appl Chem, 57: 57

    Google Scholar 

  208. Heller A (1984) Science, 223: 1141

    Google Scholar 

  209. Halmann M in ref 45, p 507

    Google Scholar 

  210. Memming R (1988) Top Curr Chem, 143: 79

    Google Scholar 

  211. Fox MA (1988) Top Curr Chem, 142: 71

    Google Scholar 

  212. Moser J, Grätzel M (1984) J Am Chem Soc, 106: 6557

    Google Scholar 

  213. Grätzel M (1982) Biochim Biophys Acta, 638: 221

    Google Scholar 

  214. Kalyanasundaram K, Borgarello E, Grätzel M (1981) Helv Chim Acta, 64: 362

    Google Scholar 

  215. Borgarello E, Pelizzetti E, Ballardini R, Scandola F (1984) Nouv J Chim, 8: 567

    Google Scholar 

  216. Hashimoto K, Kawai T, Sakata T (1983) Nouv J Chim, 7: 249

    Google Scholar 

  217. Goren Z, Lapidot N, Willner I (1988) J Mol Catal, 47: 21

    Google Scholar 

  218. Degani Y, Heller A (1987) J Phys Chem, 91: 1285

    Google Scholar 

  219. Martinek K, Berezin IV (1979) Photochem Photobiol, 29: 637

    Google Scholar 

  220. Hug C (1978) Photochem Photobiol Rev, 3: 1

    Google Scholar 

  221. Willner I, Rubin S, Riklin A (1991) J Am Chem Soc, in press

    Google Scholar 

  222. Williams DJ (1984) Angew Chem, Int Ed Engl, 23: 690

    Google Scholar 

  223. Johansson LB-A, Blanchard-Desce M, Almgren M, Lehn J-M (1989) J Phys Chem, 93:6751

    Google Scholar 

  224. Effenberger F, Schlosser H, Bauerle P, Maier S, Port H, Wolf HC (1988) Angew Chem, Int Ed Engl, 27: 281

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jochen Mattay

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Willner, I., Willner, B. (1991). Artificial photosynthetic model systems using light-induced electron transfer reactions in catalytic and biocatalytic assemblies. In: Mattay, J. (eds) Photoinduced Electron Transfer III. Topics in Current Chemistry, vol 159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-53257-9_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-53257-9_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53257-6

  • Online ISBN: 978-3-540-46785-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics