Skip to main content

Photochemistry of transition metal complexes induced by outer-sphere charge transfer excitation

  • Conference paper
  • First Online:
Photoinduced Electron Transfer II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 158))

Abstract

The intermolecular (outer sphere, OS) interaction of a reducing and an oxidizing metal complex generates a new optical transition involving charge transfer (CT) from the electron donor to the acceptor. OS CT transitions are classified according to the redox site (metal or ligand). Generally, the interaction between donor and acceptor is facilitated by ion pairs consisting of an oxidizing complex cation and a reducing complex anion. There are also ion pairs which are composed of a metal complex and an organic counter ion as electron donor or acceptor. In addition, the review includes examples of OS CT interaction which do not involve ion pairs at all. — A short introduction into the theory is followed by the discussion of the spectroscopy of OS CT of transition metal complexes. Finally, photoreactions induced by OS CT transitions are reviewed. The optical transfer is frequently followed by a rapid back electron transfer which regenerates the starting complexes. In many cases the primary products are kinetically labile and substitution reactions compete successfully with back electron transfer. As a result stable redox products may be formed. As an alternative, the substitution can be followed by back electron transfer. Product formation appears then as a substitution of the starting complexes. The various possibilities are illustrated by appropriate examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. Balzani V, Bolletta F, Gandolfi MT, Maestri M (1978) Top. Curr. Chem. 75: 1

    Google Scholar 

  2. Meyer TJ (1978) Acc. Chem. Res. 11: 94

    Article  Google Scholar 

  3. Sutin N, Creutz C (1980) Pure Appl. Chem. 52: 2717

    Google Scholar 

  4. Meyer TJ (1983) Progr. Inorg. Chem. 30: 389

    Google Scholar 

  5. Sutin N, Creutz C (1983) J. Chem. Ed. 60: 809

    Google Scholar 

  6. Serpone N (1988) In: Fox MA, Chanon M (eds) Photoinduced electron transfer. Elsevier, Amsterdam, part D, p 47

    Google Scholar 

  7. Balzani V, Scandola F (1988) In: Fox MA, Chanon M (eds) Photoinduced electron transfer. Elsevier, Amsterdam, part D, p 148

    Google Scholar 

  8. Gianotti C, Gaspard S, Kransz P (1988) In: Fox MA, Chanon M (eds) Photoinduced electron transfer. Elsevier, Amsterdam, part D, p 200

    Google Scholar 

  9. Grätzel M (1988) In: Fox MA, Chanon M (eds) Photoinduced electron transfer. Elsevier, Amsterdam, part D, p 394

    Google Scholar 

  10. Meyer TJ (1989) Acc. Chem. Res. 22: 163

    Google Scholar 

  11. Grätzel M (1989) Heterogeneous photochemical electron transfer. CRC Press, Boca Raton

    Google Scholar 

  12. Vogler A, Osman AH, Kunkely H (1985) Coord. Chem. Rev. 64: 159

    Article  Google Scholar 

  13. Hennig H, Rehorek D, Archer RD (1985) Coord. Chem. Rev. 61: 1

    Article  Google Scholar 

  14. Balzani V, Sabbatini N, Scandola F (1986) Chem. Rev. 86: 319

    Article  Google Scholar 

  15. Hennig H, Rehorek D, Billing R (1988) Comments Inorg. Chem. 8: 163

    Google Scholar 

  16. Stein CA, Taube H (1978) J. Am. Chem. Soc. 100: 1635

    Article  Google Scholar 

  17. Vogler A (1988) In: Fox MA, Chanon M (eds) Photoinduced electron transfer. Elsevier, Amsterdam, part D, p 179

    Google Scholar 

  18. Lever ABP (1984) Inorganic electronic spectroscopy, Elsevier, Amsterdam

    Google Scholar 

  19. Geoffroy GL, Wrighton MS (1979) Organometallic photochemistry, Academic, New York

    Google Scholar 

  20. Taube H (1978) Ann. N.Y. Acad. Sci. 313: 483

    Google Scholar 

  21. Meyer TJ (1978) Ann. N.Y. Acad. Sci. 313: 496

    Google Scholar 

  22. Brown D (ed) (1980) Mixed-valence compounds, Reidel, Dordrecht

    Google Scholar 

  23. Creutz C (1980) Progr. Inorg. Chem. 30: 1

    Google Scholar 

  24. Hush NS (1967) Progr. Inorg. Chem. 8: 391

    Google Scholar 

  25. Vogler A, Kunkely H (1989) Z. Naturforsch. 44b: 132

    Google Scholar 

  26. Vogler A, Kunkely H (1990) Comments Inorg. Chem. 9: 201

    Google Scholar 

  27. Hush NS (1961) Trans. Faraday Soc. 57: 557

    Article  Google Scholar 

  28. Nush NS (1968) Electrochim. Acta 13: 1005

    Article  Google Scholar 

  29. Powers MJ, Meyer TJ (1980) J. Am. Chem. Soc. 102: 1289

    Article  Google Scholar 

  30. Hennig H, Billing R, Benedix R (1986) Monatshefte Chem. 117: 51

    Google Scholar 

  31. Hennig H, Benedix R, Billing R (1986) J. Prakt. Chem. 328: 829

    Article  Google Scholar 

  32. Simic M, Lilie J (1974) J. Am. Chem. Soc. 96: 291

    Article  Google Scholar 

  33. Fox M (1975) In: Adamson AW, Fleischauer PD (eds) Concepts of inorganic chemistry, Wiley, New York, p 333.

    Google Scholar 

  34. Jørgensen CK (1963) Acta Chem. Scand. 17: 1034

    Google Scholar 

  35. Vogler A, Kunkely H (1987) Inorg. Chem. 26: 1819

    Article  Google Scholar 

  36. Vogler A, Kunkely H (1988) Inorg. Chim. Acta 144: 149

    Article  Google Scholar 

  37. Vogler A, Kunkely H (1986) J. Chem. Soc. Chem. Commun.: 1616

    Google Scholar 

  38. Hennig H, Rehorek A, Ackermann M, Rehorek D, Thomas P (1983) Z. Anorg. Allg. Chem. 496: 186

    Article  Google Scholar 

  39. Hennig H, Rehorek A, Rehorek D, Thomas P (1984) Inorg. Chim. Acta 86: 41

    Article  Google Scholar 

  40. Haim A (1985) Comments Inorg. Chem. 4: 113

    Google Scholar 

  41. Vogler A, Kisslinger J (1982) Angew. Chem. Int. Ed. Engl. 21: 77

    Google Scholar 

  42. Osman AH (1987) Inter-und intramolekulare Photoredoxreaktionen von Übergangsmetallkomplexen. Thesis, Universität Regensburg, Regensburg

    Google Scholar 

  43. Vogler A, Kunkely H (1975) Ber. Bunsenges. Phys. Chem. 79: 83

    Google Scholar 

  44. Curtis JC, Meyer TJ (1978) J. Am. Chem. Soc. 100: 6284

    Article  Google Scholar 

  45. Toma HE (1980) J. Chem. Soc. Dalton: 471

    Google Scholar 

  46. Curtis JC, Meyer TJ (1982) Inorg. Chem. 21: 1562

    Article  Google Scholar 

  47. Vogler A, Kisslinger J (1982) J. Am. Chem. Soc. 104: 2311

    Article  Google Scholar 

  48. Sabbatini N, Bonazzi A, Ciano M, Balzani V (1984) J. Am. Chem. Soc. 106: 4055

    Article  Google Scholar 

  49. Sabbatini N, Balzani V (1985) J] Less-Common Met. 112: 381

    Article  Google Scholar 

  50. Vogler A, Kunkely H (1988) Inorg. Chim. Acta 150: 3

    Article  Google Scholar 

  51. Lee KY, Kochi JK (1989) Inorg. Chem. 28: 567

    Article  Google Scholar 

  52. Schramm C, Zink JI (1979) J. Am. Chem. Soc. 101: 4554

    Article  Google Scholar 

  53. Hieber W, Vohler O, Braun G (1958) Z. Naturforsch. 13b: 192

    Google Scholar 

  54. Vogler A, Kunkely H (1988) Organometallics 7: 1449

    Article  Google Scholar 

  55. Kruck T, Höfler M (1964) Chem. Ber. 97: 2289

    Google Scholar 

  56. Kruck T, Höfler M, Noack M (1966) Chem. Ber. 99: 1153

    Google Scholar 

  57. Fischer EO, Kögler HP (1956) Angew. Chem. 68: 462

    Google Scholar 

  58. Hieber W, Schropp W (1960) Chem. Ber. 93: 455

    Google Scholar 

  59. Bockman TM, Kochi JK (1988) J. Am. Chem. Soc. 110: 1294

    Article  Google Scholar 

  60. Kunkely H, Vogler A (1989) J. Organomet. Chem. 372: C29

    Google Scholar 

  61. Nakahara A, Wang JH (1963) J. Phys. Chem. 67: 496

    Google Scholar 

  62. Toma HE (1979) Can. J. Chem. 57: 2079

    Google Scholar 

  63. Curtis JC, Sullivan BP, Meyer TJ (1980) Inorg. Chem. 19: 3833

    Article  Google Scholar 

  64. Rehorek D, Hantschmann A, Salvetter J, Hennig H (1979) J. Prakt. Chem. 328: 159

    Article  Google Scholar 

  65. Billing R, Rehorek D, Salvetter J, Hennig H (1988) Z. Anorg. Allg. Chem. 557: 234

    Article  Google Scholar 

  66. Kisslinger J, Vogler A (unpublished results)

    Google Scholar 

  67. Borovnikov MS, Geosdovskij GN, Rybakov VA, Tarasov BP (1982) Zhurn. Obskh. Khim. 52: 331

    Google Scholar 

  68. Calderazzo F, Pampaloni G, Lanfranchi M, Pelizzi G (1985) J. Organomet. Chem. 296: 1

    Article  Google Scholar 

  69. Calderazzo F, Pampaloni G (1986) J. Organomet. Chem. 303: 111

    Article  Google Scholar 

  70. Calderazzo F, Pampaloni G, Pelizzi G, Vitali F (1988) Organometallics 7: 1083.

    Article  Google Scholar 

  71. Dance IG, Solstad PJ (1973) J. Am. Chem. Soc. 95: 7256

    Article  Google Scholar 

  72. Fernandez A, Görner H, Kisch H (1985) Chem. Ber. 118: 1936

    Google Scholar 

  73. Lahner S, Wakatsuki Y, Kisch H (1987) Chem. Ber. 120: 1011

    Google Scholar 

  74. Megehee EG, Johnson CE, Eisenberg R (1989) Inorg. Chem. 28: 2423

    Article  Google Scholar 

  75. Linhard M (1944) Z. Elektrochem. 50: 224

    Google Scholar 

  76. Linhard M, Weigel M (1951) Z. Anorg. Allg. Chem. 266: 49

    Article  Google Scholar 

  77. Schmidtke H-H (1963) Z. Phys. Chem. N.F.: 38: 170

    Google Scholar 

  78. Pina F, Ciano M, Mulazzani QG, Venturi M, Balzani V, Moggi L (1984) Sci. Papers I.P.C.R. 78: 166

    Google Scholar 

  79. Pina F, Ciano M, Buggi L, Balzani V (1985) Inorg. Chem. 24: 844

    Article  Google Scholar 

  80. Pina F, Mulazzani QG, Venturi M, Ciano M, Balzani V (1985) Inorg. Chem. 24: 848

    Article  Google Scholar 

  81. Sugimoto H, Hataoka H, Mori M (1982) J. Chem. Soc. Chem. Commun.: 1301

    Google Scholar 

  82. Waysbort D, Evenor M, Navon G (1975) Inorg. Chem. 14: 514

    Article  Google Scholar 

  83. Sexton DA, Curtis JC, Cohen H, Ford PC (1984) Inorg. Chem. 23: 49

    Article  Google Scholar 

  84. Elsbernd H, Beattie JK (1968) Inorg. Chem. 7: 2468

    Article  Google Scholar 

  85. Clark SF, Watts RJ, Dubois DL, Connolly JS, Smart JC (1985) Coord. Chem. Rev. 64: 273

    Article  Google Scholar 

  86. Orgel LE (1954) Quarterly Rev. 8: 422

    Article  Google Scholar 

  87. Harris CM, McKenzie ED (1963) J. Inorg. Nucl. Chem. 25: 171

    Article  Google Scholar 

  88. Matsubara T, Efrima S, Metiu HT, Ford PC (1979) J. Chem. Soc. Faraday Trans II, 75: 390

    Article  Google Scholar 

  89. Kalisky O, Shirom M (1977) J. Photochem. 7: 215

    Article  Google Scholar 

  90. Vogler A, Losse W, Kunkely H (1979) J. Chem. Soc. Chem. Commun.: 187

    Google Scholar 

  91. Brand JCD, Snedden W (1957) Trans. Faraday Soc. 53: 894

    Article  Google Scholar 

  92. Traverso O, Scandola F (1970) Inorg. Chim. Acta 4: 493

    Article  Google Scholar 

  93. Bock CR, Wrighton MS (1977) Inorg. Chem. 16: 1309

    Article  Google Scholar 

  94. Fitch IW, Lagowski JJ (1966) J. Organomet. Chem. 5: 480

    Article  Google Scholar 

  95. Huttner G, Fischer EO, Fischer RD, Carter OL, McPhail AT, Sim GA (1966) J. Organomet. Chem. 6: 288

    Article  Google Scholar 

  96. Huttner G, Fischer EO (1967) J. Organomet. Chem. 8: 299

    Article  Google Scholar 

  97. Kobayashi H, Kobayashi M, Kaizu Y (1973) Bull. Chem. Soc. Jpn. 46: 3109

    Google Scholar 

  98. Kobayashi H, Kobayashi M, Kaizu Y (1975) Bull. Chem. Soc. Jpn 48: 1222

    Google Scholar 

  99. Holland GF, Mannig MC, Ellis DE, Trogler WC (1983) J. Am. Chem. Soc. 105: 2308

    Article  Google Scholar 

  100. Lilie J, Shinohara N, Simic MG (1976) J. Am. Chem. Soc. 98: 6516

    Article  Google Scholar 

  101. Shinohara N, Lilie J, Simic MG (1977) Inorg. Chem. 16: 2809

    Article  Google Scholar 

  102. Haim A, Wilmarth WK (1961) J. Am. Chem. Soc. 83: 509

    Article  Google Scholar 

  103. Vogler A, Kunkely H (1975) Ber. Bunsenges. Phys. Chem. 79: 301

    Google Scholar 

  104. Vogler A, Osman AH, Kunkely H (1987) Inorg. Chem. 26: 2337

    Article  Google Scholar 

  105. Larsson R (1967) Acta Chem. Scand. 21: 257

    Google Scholar 

  106. Kane-Maguire NAP, Langford CH (1973) J. Chem. Soc. Chem. Commun.: 351

    Google Scholar 

  107. Langford CH, Sasseville RLP (1981) Can. J. Chem. 59: 647

    Google Scholar 

  108. Creutz C, Kroger P, Matsubara T, Netzel TL, Sutin N (1979) J. Am. Chem. Soc. 101: 5442

    Article  Google Scholar 

  109. Mirbach MF, Mirbach MJ, Wegman RW (1984) Organometallics 3: 900

    Article  Google Scholar 

  110. McCleverty JA, Davison A, Wilkinson G (1965) J. Chem. Soc.: 3890

    Google Scholar 

  111. Meyer TJ, Caspar JV (1985) Chem. Rev. 85: 187

    Article  Google Scholar 

  112. Tyler DR (1988) Progr. Inorg. Chem. 36: 125

    Google Scholar 

  113. Doyle MP, Guy JK, Brown KC, Mahapatro SN, VanZyl CM, Pladziewicz JR (1987) J. Am. Chem. Soc. 109: 1536

    Article  Google Scholar 

  114. Adamson AW, Sporer A (1958) J. Am. Chem. Soc. 80: 3865

    Article  Google Scholar 

  115. Rehorek D, Schmidt D, Hennig H (1980) Z. Chem. 20: 223

    Google Scholar 

  116. Hennig H, Walther D, Thomas P (1983) Z. Chem. 23: 446

    Google Scholar 

  117. Nakashima M, Kida S (1982) Bull. Chem. Soc. Jpn. 55: 809

    Google Scholar 

  118. Matsubara T, Ford PC (1978) Inorg. Chem. 17: 1747

    Article  Google Scholar 

  119. Bockman TM, Kochi JK (1989) J. Am. Chem. Soc. 111: 4669

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Mattay

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Vogler, A., Kunkely, H. (1990). Photochemistry of transition metal complexes induced by outer-sphere charge transfer excitation. In: Mattay, J. (eds) Photoinduced Electron Transfer II. Topics in Current Chemistry, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-52568-8_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-52568-8_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52568-4

  • Online ISBN: 978-3-540-47036-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics