Skip to main content

The potential and limitations of direct and large-eddy simulations Comment 2

  • Session Four
  • Conference paper
  • First Online:
Whither Turbulence? Turbulence at the Crossroads

Part of the book series: Lecture Notes in Physics ((LNP,volume 357))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schumann, U.; Grotzbach, G.; and Kleiser, L.: Direct numerical simulation of turbulence, in Prediction Methods for Turbulent Flows, W. Kollmann (ed.), Hemisphere Pub. Corp., Washington, pp. 123–258 (1980).

    Google Scholar 

  2. Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; and Zang, T. A.: Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin (1988).

    Google Scholar 

  3. Browning, G.; and Kreiss, H. 0.: Comparison of numerical methods for the calculation of two-dimensional turbulence, Math. Comput., Vol. 52 (in press).

    Google Scholar 

  4. Krist, S. E.: Direct Solution of the Navier-Stokes Equations Using Finite-Difference Methods, Ph.D. Dissertation, George Washington University (1989).

    Google Scholar 

  5. Rai, M. M.; and Moin, P.: Direct Simulations of Turbulent Flow using Finite-Difference Schemes, AIAA Paper No. 89-0369 (1989).

    Google Scholar 

  6. Zang, T. A.; Streett, C. L.; and Hussaini, M. Y.: Spectral methods for CFD, ICASE Report No. 89–13 (1989).

    Google Scholar 

  7. Krist, S. E.; and Zang, T. A.: Simulations of Transition and Turbulence on the Navier-Stokes Computer, AIAA Paper No. 87-1110 (1987).

    Google Scholar 

  8. Horiuti, K.: Comparison of conservative and rotational forms in large eddy simulation of turbulent channel flow, J. Comput. Phys., Vol. 71, pp. 343–370 (1987).

    Article  Google Scholar 

  9. Zang, T. A.: On the rotation and skew-symmetric forms for incompressible flow simulations, Appl. Numer. Math. (in press).

    Google Scholar 

  10. Ronquist, E. M.: Optimal spectral element methods for the unsteady three-dimensional incompressible Navier-Stokes equations, Ph.D. Thesis, Massachusetts Institute of Technology (1988).

    Google Scholar 

  11. Passot, T.; and Pouquet, A.: Numerical simulation of compressible homogeneous flows in the turbulent regime, J. Fluid Mech, Vol. 181, pp. 441–466 (1987).

    Google Scholar 

  12. Lele, S. K.: Direct Numerical Simulation of Compressible Free Shear Flows, AIAA Paper No. 89-0374 (1989).

    Google Scholar 

  13. Zang, T. A.; Hussaini, M. Y.; and Bushnell, D. M.: Numerical Computations of Turbulence Amplification in Shock Wave Interaction. AIAA J., Vol. 22, pp. 13–21, (1984).

    Google Scholar 

  14. Erlebacher, G.; Hussaini, M. Y.; and Kreiss, H. 0.: Direct Simulation of Compressible Turbulence, (in preparation).

    Google Scholar 

  15. Speziale, C. G.; Erlebacher, G.; Zang, T. A.; and Hussaini, M. Y.: The Subgrid-scale Modeling of Compressible Turbulence, Phys. Fluids, Vol. 31, pp. 940–942 (1988).

    Article  Google Scholar 

  16. Shu, C. W.; and Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes II, ICASE Report No. 88-24 (1988).

    Google Scholar 

  17. Zang, T. A.; Drummond, P.; and Kumar, A.: Numerical Simulation of Enhanced Mixing and Turbulence in Supersonic Flows, in The Physics of Compressible Turbulent Mixing, (W. P. Dannevik, A. C. Buckingham, and C. E. Leith, eds.) Lecture Notes in Engineering, Springer-Verlag, in press.

    Google Scholar 

  18. Soetrisno, M.; Eberhardt, S.; Riley, J. J.; and McMurtry, P.: A Study of Inviscid, Supersonic Mixing Layers Using a Second-Order TVD Scheme, AIAA Paper No. 88-3676 (1988).

    Google Scholar 

  19. Foias, C.; Manley, 0.; and Temam, R.: On the interaction of small and large eddies in two dimensional turbulent flows, ICASE Report No. 87-60 (1987).

    Google Scholar 

  20. Henshaw W. D.; Kreiss, H. O.; and Reyna, L. G.: On the smallest scale for the incompressible Navier-Stokes equations, Theor. Comp. Fluid Dyn., Vol. 1, pp. 65–95 (1989).

    Google Scholar 

  21. Henshaw W. D.; Kreiss, H. 0.; and Reyna, L. G.: On the exponential decay of the energy spectrum, Arch. Rational Mech., (submitted for publication).

    Google Scholar 

  22. Rogallo, R. S.: Numerical Experiments in Homogeneous Turbulence, NASA TM-81315 (1981).

    Google Scholar 

  23. Bardina, J.; Ferziger, J. H.; and Reynolds, W. C.: Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows. Report TF-19, Dept. of Mech. Eng., Stanford Univ. (1983).

    Google Scholar 

  24. Speziale, C. G.; and MacGiolla Mhuiris, N.: On the prediction of equilibrium states in homogeneous turbulence, ICASE Report No. 88-27 (1988) (to appear in J. Fluid Mech.).

    Google Scholar 

  25. Bardina, J.; Ferziger, J. H.; and Rogallo, R. S.: Effect of rotation on isotropic turbulence: computation and modelling, J. Fluid Mech., Vol. 154, pp. 321–336 (1985).

    Google Scholar 

  26. Speziale, C. G.; Mansour, N. N.; and Rogallo, R. S.: The decay of isotropic turbulence in a rapidly rotating frame, in Studying Turbulence Using Numerical Simulation Databases, Report CTR-S87, pp. 205–211, Stanford Univ (1987).

    Google Scholar 

  27. Gilbert, N.; and Kleiser, L.: Near-wall phenomena in transition to turbulence, in Proceedings of the International Seminar on Near-Wall Turbulence, Hemisphere, Washington (1988).

    Google Scholar 

  28. Gilbert, N.: Numerische Simulation der Transition von der laminaren in die turbulente Kanalstromung, DFVLR-FB 99-55, Gottingen, W. Germany (1988).

    Google Scholar 

  29. Zang, T. A.; and Krist, S. E.: Numerical experiments on stability and transition in plane channel flow, Th. Comp. Fluid Dyn., Vol. 1, pp. 41–64 (1989).

    Google Scholar 

  30. Deardorff, J. W.: The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence, J. Fluids Eng., Vol. 95, pp. 429–438 (1973).

    Google Scholar 

  31. Clark, R. A.; Ferziger, J. H. and Reynolds, W. C.: Evaluation of subgrid scale models using an accurately simulated turbulent flow, J. Fluid Mech., Vol. 91, pp. 1–16 (1979).

    Google Scholar 

  32. Tavoularis, S.; and Corrsin, S.: Experiments in nearly homogeneous turbulent shear flows with a uniform mean temperature gradient. Part I, J. Fluid Mech., Vol. 104, pp. 311–347 (1981).

    Google Scholar 

  33. Schumann, U.: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli, J. Comput. Phys., Vol. 18, pp. 376–404 (1975).

    Article  Google Scholar 

  34. Moin, P.; and Kim, J.: Numerical investigation of turbulent channel flow, J. Fluid Mech., Vol. 118, pp. 341–378 (1982).

    Google Scholar 

  35. Yakhot, V.; and Orszag, S. A.: Renormalization group analysis of turbulence. I. Basic theory, J. Sci. Computing, Vol. 1, pp. 3–51 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. L. Lumley

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Yousuff Hussaini, M., Speziale, C.G., Zang, T.A. (1990). The potential and limitations of direct and large-eddy simulations Comment 2. In: Lumley, J.L. (eds) Whither Turbulence? Turbulence at the Crossroads. Lecture Notes in Physics, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-52535-1_54

Download citation

  • DOI: https://doi.org/10.1007/3-540-52535-1_54

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52535-6

  • Online ISBN: 978-3-540-47032-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics