Skip to main content

The chemistry of the noble gas elements helium, neon, and argon — Experimental facts and theoretical predictions

  • Conference paper
  • First Online:
Noble Gas and High Temperature Chemistry

Part of the book series: Structure and Bonding ((STRUCTURE,volume 73))

Abstract

The results of 65 years of experimental and theoretical research in light noble gas chemistry is reviewed, with particular emphasis on recent quantum chemical studies on the structures, stabilities and bonding of molecules containing He, Ne, or Ar. The scattered experimental results reported mainly for cations are interpreted using a chemical bonding model which is based on donor-acceptor interactions. A systematic view of bonding in Ng compounds (Ng = He, Ne, Ar) is presented that allows the prediction of new compounds which are theoretically predicted to be stable or metastable. The nature of the Ng,X interactions is studied with the help of the analysis of the electron density distribution and its associated Laplace field. Covalent noble gas bonds are found for many cations and dications, while closed-shell interactions are responsible for the unusually stable van der Waals compounds NgBeO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartlett N: Proc. Chem. Soc. 1962: 218

    Google Scholar 

  2. For a recent review on the history of the discovery of noble gas compounds see: Laszlo P, Schrobilgen G (1988) Angew. Chem. 100: 495; (1988) Angew. Chem. Int. Ed. Engl. 27: 479

    CAS  Google Scholar 

  3. Hogness TR, Lunn EG (1925) Phy. Rev. 26: 50

    Google Scholar 

  4. Frenking G, Koch W, Gauss J, Cremer D, Liebmann JF (1989) J. Phys. Chem. 93: 3397

    Article  CAS  Google Scholar 

  5. Frenking G, Koch W, Gauss J, Cremer D, Liebman JF (1989) J. Phys. Chem. 93: 3410

    Article  CAS  Google Scholar 

  6. Frenking G, Koch W, Deakyne C, Liebmann JF, Bartlett N (1989) J. Am. Chem. Soc. 111: 31

    Article  CAS  Google Scholar 

  7. Koch W, Frenking G, Gauss J, Cremer, D, Collins JR (1987) J. Am. Chem. Soc. 109: 5917

    Article  CAS  Google Scholar 

  8. Koch W, Frenking G, Luke BT (1987) Chem. Phys. Lett. 139: 149

    Article  CAS  Google Scholar 

  9. Koch W, Frenking G (1987) J. Chem. Phys. 86: 5617

    Article  CAS  Google Scholar 

  10. Koch W, Liu B, Frenking G (in print) J. Chem. Phys.

    Google Scholar 

  11. Koch W, Frenking G: J. Chem. Soc. Chem. Commun. 1986: 1095

    Google Scholar 

  12. Koch W, Frenking G (1986) Int. J. Mass Spectrom. Ion Proc. 74: 133

    Article  CAS  Google Scholar 

  13. Frenking G, Koch W, Reichel F, Cremer D (in print) J. Am. Chem. Soc.

    Google Scholar 

  14. Koch W, Collins JR, Frenking G (1986) Chem. Phys. Lett. 132: 330

    Article  CAS  Google Scholar 

  15. Frenking G, Koch W, Gauss J, Cremer D (1988) J. Am. Chem. Soc. 110: 8007

    Article  CAS  Google Scholar 

  16. See e.g., Hehre WJ, Radom L, Schleyer PVR, Pople JA (1985) Ab initio molecular orbital theory, Wiley, New York

    Google Scholar 

  17. (a) Cremer D (1988) In: Maksić ZB (ed) Modelling of structure and properties of molecules. Ellis Horwood, Chichester, England, p 125; (b) Kraka E, Cremer D (in press) In: Maksié ZB (ed) Theoretical models of chemical bonding, vol 2, Springer Verlag, Berlin Heidelberg New York

    Google Scholar 

  18. (a) Bader RFW, Preston HJT (1969) Int. J. Quant. Chem. 3: 327; (b) Feinberg MJ, Ruedenberg K (1971) J. Chem. Phys. 54: 1495; (c) Kutzelnigg W (1973) Angew. Chem. 13: 551

    Article  CAS  Google Scholar 

  19. Cremer D, Kraka E (1984) Croat. Chem. Acta 57: 1259

    Google Scholar 

  20. Bader RFW, Essen H (1984) J. Chem. Phys. 80: 1943

    Article  CAS  Google Scholar 

  21. Frenking G, Koch W (1988) Int. J. Mass Spectrom. Ion Proc. 82: 335

    Article  CAS  Google Scholar 

  22. (a) Coppens P, Hall MB (eds) (1982) Electron distributions and the chemical bond, Plenum, New York (b) Becker P (ed) (1978) Electron and magnetization densities in molecules and crystals, Plenum, New York

    Google Scholar 

  23. Hohenberg H, Kohn W (1964) Phys. Rev. 136B: 864

    Article  Google Scholar 

  24. (a) Bader RFW, Nguyen-Dank TT, Tal Y (1981) Rep. Prog. Phys. 44: 893; (b) Bader RFW, Nguyen-Dang TT (1981) Adv. Quantum Chem. 14: 63

    Article  Google Scholar 

  25. For a more detailed review, see Ref. 17b

    Google Scholar 

  26. Bader RFW, Slee TS, Cremer D, Kraka E (1983) J. Amer. Chem. Soc. 105: 5061

    Article  CAS  Google Scholar 

  27. Cremer D, Kraka E (1984) Angew. Chem. 96: 612; (1984) Int. Ed. Engl. 23: 627

    CAS  Google Scholar 

  28. Cremer D, Kraka E (1985) J. Amer. Chem. Soc. 107: 3800, 3811

    Article  CAS  Google Scholar 

  29. Cremer D, Kraka E, Slee TS, Bader RFW, Lau CDH, Nguyen-Dang TT (1983) J. Amer. Chem. Soc. 105: 5069

    Article  CAS  Google Scholar 

  30. (a) Cremer D, Gauss J (1986) J. Amer. Chem. Soc. 108: 7467; (b) Cremer D, Kraka E (1988) In: Liebman JF, Greenberg A (eds) Structure and reactivity, VCH Publishers, Deerfield Beach, USA, p 65

    Article  CAS  Google Scholar 

  31. Cremer D, Gauss J, Kraka E (1988) J. Mol. Struct. (THEOCHEM) 169: 531

    Article  Google Scholar 

  32. Note that Bader [24] uses these terms differently by calling all MED paths, also those between closed shell systems, bond paths. This, however, is contrary to general chemical understanding.

    Google Scholar 

  33. Morse PM, Feshbach H (1953) Methods of theoretical physics vol 1, McGraw-Hill, New York, p 6

    Google Scholar 

  34. Bader RFW, MacDougall PJ, Lau CDH (1984) J. Am. Chem. Soc. 106: 1594 See also Ref. 19

    Article  CAS  Google Scholar 

  35. Bader RFW (1980) J. Chem. Phys. 73: 2781. G(r) is always positive while V(r) is always negative. When integrated over total molecular space, they yield the kinetic and potential energy of a molecule: E = ∫H(r) dr = ∫G(r) dr + ∫V(r) dr

    Article  Google Scholar 

  36. Tüxen O (1936) Z. Physik 103: 463

    Article  Google Scholar 

  37. Hornbeck JA, Molnar JP (1951) Phys. Rev. 84: 621

    Article  CAS  Google Scholar 

  38. Inghram MG (1953) Natl. Bur. Standards (U.S.) Circ. No. 522: 204

    Google Scholar 

  39. (a) Fukui K (1971) Accts. Chem. Res. 4: 57; (b) Fleming I (1976) Frontier orbitals and organic chemical reactions, Wiley, Chichester

    Article  CAS  Google Scholar 

  40. Munson MSB, Franklin JL, Field FH (1963) J. Phys. Chem. 67: 1542

    CAS  Google Scholar 

  41. Weise H-P, Mittmann H-U (1973) Z. Naturforsch. 28a: 714

    Google Scholar 

  42. Wadt WR (1978) J. Chem. Phys. 68: 402

    Article  CAS  Google Scholar 

  43. Black JH: cited in Ref. 44

    Google Scholar 

  44. Yu N, Wing WH (1987) Phys. Rev. Lett. 59: 2055

    Article  CAS  Google Scholar 

  45. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure, vol IV, Constants of diatomic molecules. Van Nostrand Reinhold, New York

    Google Scholar 

  46. Christodoulides AA, McCorkle DL, Christophoru LG (1984) In: Christophorou LG (ed) Electron-molecule interactions and their applications, vol 2, Academic, London

    Google Scholar 

  47. Bondyby V, Pearson PK, Schaefer HF (1972) J. Chem. Phys. 57: 1123

    Article  Google Scholar 

  48. Pauling L (1933) J. Chem. Phys. 1: 56

    Article  CAS  Google Scholar 

  49. Guilhaus M, Brenton AG, Beynon JH, Rabenovic M, Schleyer PVR (1984) J. Phys. B17: L605

    Google Scholar 

  50. Frenking G, Koch W, Liebmann JF (1989) In: Liebmann JF, Greenberg A (eds) Molecular structure and energetics: From atoms to polymers. Isoelectronic analogies, VCH Publishers, p 169

    Google Scholar 

  51. Gill PMW, Radom L (1987) Chem. Phys. Lett. 136: 294

    Article  CAS  Google Scholar 

  52. (a) Yagisawa H, Sato H, Watanabe, T (1977) Phys. Rev. A16: 1352; (b) Cohen JS, Bardsley JN (1978) Phys. Rev. A18: 104

    Google Scholar 

  53. Mercier E, Chambaud G, Lewy B (1985) J. Phys. B18: 3591

    Google Scholar 

  54. Montanbonel M-CB; Cimiraglia R, Persico M (1984) J. Phys. B17: 1931

    Google Scholar 

  55. The ground states on Ne2+ and Ar2+ have 3P symmetry. The lowest lying electronic state of Ng2+ + He(1S) (Ng = Ne, Ar) which can mix with the (1) 1Σ+ state is the 1D state of Ng2+. This state is 3.204 eV (Ne2+) and 1.737 eV (Ar2+) higher in energy than the 3P ground state [62]

    Google Scholar 

  56. The situation is actually more complicated because more than two states are sometimes involved in the mixing of the ground state curves: Stärk D, Peyerimhoff SD (1986) Mol. Phys. 59: 1241

    Article  Google Scholar 

  57. Stärk D (Personal communication)

    Google Scholar 

  58. Helm H, Stephan K, Märk TD, Huestis DL (1981) J. Chem. Phys. 74: 3844

    Article  CAS  Google Scholar 

  59. Stephan K, Märk TD, Helm H (1982) Phys. Rev. A26: 2981

    Google Scholar 

  60. Carrington A, Softley TP (1983) In: Miller TA, Bondybey VE (eds) Molecular ions: Spectroscopy, structure and chemistry, North-Holland, Amsterdam

    Google Scholar 

  61. Beach JY (1936) J. Chem. Phys. 4: 353

    Article  CAS  Google Scholar 

  62. Moore CE (1971) Atom energy levels as derived from the analyses of optical spectra, Nat. Stand Ref. Data Ser. Nat. Bur. Stand. (U.S.) NSRDS-NBS

    Google Scholar 

  63. (a) Kolos W, Peek JM (1976) Chem. Phys. 12: 381; (b) Kolos W (1976) Int. J. Quantum Chem. 10: 217

    Article  CAS  Google Scholar 

  64. (a) Rosmus P (1979) Theoret. Chim. Acta 51: 359; (b) Rosmus P, Reinsch EA (1980) Z. Naturforsch. 35a: 1066; (c) Klein R, Rosmus P, (1984) Z. Naturforsch. 39a: 349; (d) Rosmus P, Reinsch EA, Werner HJ (1983) In: Berkowitz J, Groeneveld KO (eds) Molecular ions: geometric and electronic structures, Plenum, New York

    Article  CAS  Google Scholar 

  65. Bernath P, Amano T (1982) Phys. Rev. Lett. 48: 20

    Article  CAS  Google Scholar 

  66. Wong M, Bernath P, Amano T (1982) J. Chem. Phys. 77: 693

    Article  CAS  Google Scholar 

  67. Lorenzen J, Hotop H, Ruf MW, Morgner H (1980) Z. Physik A, 297: 19

    Article  CAS  Google Scholar 

  68. Ram RS, Bernath PF, Brault JW (1985) J. Mol. Spectrosc. 113: 451

    Article  CAS  Google Scholar 

  69. Brault JW (1978) Proceeding of the Workshop on Future Solar Observations, Needs and Constraints, Florence

    Google Scholar 

  70. Johns JWC (1984) J. Mol. Spectrosc. 106: 124

    Article  CAS  Google Scholar 

  71. Wells BH, Wilson S (1986) J. Phys. B19: 17

    Google Scholar 

  72. Butler SE, Bender CF, Dalgarno A (1979) Astrophys. J. Lett. 230: 59

    Article  Google Scholar 

  73. Chambaud G, Levy B (1986) Ann. Phys. 11: Suppl. 3, 107

    CAS  Google Scholar 

  74. (a) Dalgano A, McDowell MRC, Williams A (1958) Phil. Trans. R. Soc. A250: 411; (b) Mason EA, Schamp HW Jr, (1958) Ann. Phys. 4: 233; (c) Polark-Dingels P, Rajan MS, Gislason EA (1982) J. Chem. Phys. 77: 3983

    Google Scholar 

  75. Böttner E, Dimpft WL, Ross U, Toennies JP (1975) Chem. Phys. Lett. 32: 197

    Article  Google Scholar 

  76. (a) Subbaram KV, Coxon JA, Jones WE (1976) Can. J. Phys. 54: 1535; based on the experimental data, slightly different dissociation energies have been predicted by: (b) Goble JH, Winn JS (1977) J. Chem. Phys. 67: 4206; (c) Le Roy RJ, Lam W-H (1980) Chem. Phys. Lett. 71: 544; (d) Vahala L, Havey M (1984) J. Chem. Phys. 81: 4867

    CAS  Google Scholar 

  77. Ding A, Karlau J, Weise J, Kendrick J, Kuntz PJ, Hillier IH, Guest MF (1978) J. Chem. Phys. 68: 2206

    Article  CAS  Google Scholar 

  78. Hillier IH, Guest MF, Ding A, Karlau J, Weise J (1979) J. Chem. Phys. 70: 864

    Article  CAS  Google Scholar 

  79. Estimated value in Ref. 82c.

    Google Scholar 

  80. Ding A, Karlau J, Weise J (1977) Chem. Phys. Lett. 45: 92

    Article  CAS  Google Scholar 

  81. Berkowitz J, Chupka W (1970) Chem. Phys. Lett. 7: 447

    Article  CAS  Google Scholar 

  82. (a) Liebmann JF, Allen LC (1972) Inorg. Chem. 11: 1143; (b) Liebmann JF, Allen LC (1970) J. Am. Chem. Soc. 92: 3539; (c) Liebmann JF, Allen LC (1971) Int. J. Mass Spectrom. Ion Phys. 7: 27

    Article  Google Scholar 

  83. Cooper DL, Wilson S (1981) Mol. Phys. 44: 161

    Article  CAS  Google Scholar 

  84. Bernardi F, Epiotis ND, Cherry W, Schlegel HB, Whangbo M-H, Wolfe S (1976) J. Am. Chem. Soc. 98: 469

    Article  CAS  Google Scholar 

  85. Moore CE (1970) Ionization potentials and ionization limits derived from the analyses of optical spectra nar. Stand Ref. Data Ser. Nat. Bur. Stand. (U.S.) NSRDS-NBS 34

    Google Scholar 

  86. Jørgensen CK (1986) Z. Anorg. Allg. Chem. 540: 91

    Article  Google Scholar 

  87. Liebmann JF, Allen JF: J. Chem. Soc. Chem. Commun. 1969: 1355

    Google Scholar 

  88. Jonkman HT, Michl J (1981) J. Am. Chem. Soc. 103: 733

    Article  CAS  Google Scholar 

  89. Jonathan P, Boyd RK, Brenton AG, Beynon JH (1986) Chem. Phys. 110: 239

    Article  CAS  Google Scholar 

  90. (a) Hayes EF, Gole JL (1971) J. Chem. Phys. 55: 5132; (b) Harrison SW, Massa LJ, Solomon P (1972) Chem. Phys. Lett. 16: 57; (c) Alvarez-Rizzatti M, Mason EA (1975) J. Chem. Phys. 63: 5290; (d) Schleyer PvR (1985) Adv. Mass Spectrom. 10a: 287

    Article  CAS  Google Scholar 

  91. Harrison SW, Henderson GA, Masson LJ, Salomon P (1974) Astrophys. J. 189: 605

    Article  CAS  Google Scholar 

  92. (a) Müller EW, McLane SB, Panitz JA (1969) Surf. Sci. 17: 430; (b) Tsong TT, Müller EW (1970) Phys. Rev. Lett. 25: 911; (c) Tsong TT, Müller EW (1971) J. Chem. Phys. 55: 2884; (d) Müller EW, Tsong TT (1973) Prog. Surf. Sci., 4: 1; (e) Müller EW, Krishnaswamy (1973) Phys. Rev. Lett. 31: 1282; (f) Tsong TT, Kinkus TJ (1983) Physica scripta, T4: 201; (g) Tsong TT, Kinkus TJ (1984) Phys. Rev. B29: 529; (h) Tsong TT (1984) Phys. Rev. B30: 4946; (i) Tsong TT, Lion Y (1985) Phys. Rev. Lett. 55: 2180

    Article  Google Scholar 

  93. Hotokka M, Kindstedt T, Pyykkö P, Roos B (1984) Mol. Phys. 52: 23

    Article  CAS  Google Scholar 

  94. Wong MW, Radom L (1988) J. Am. Chem. Soc. 110: 2375

    Article  CAS  Google Scholar 

  95. Wong MW, Nobes: RH, Radom L: J. Chem. Soc., Chem. Commun. 1987: 233; (b) Wong MW, Nobes RH, Radom L (1987) Rapid Commun. Mass Spectrom. 1: 3; (c) Radom L, Gill PMW, Wong MW, Nobes RH (1988) Pure Appl. Chem. 60: 183

    Google Scholar 

  96. Hirschfelder JO, Curtiss CF, Bird RB (1986) Molecular theory of gases and liquids, Wiley, New York

    Google Scholar 

  97. Wilson S, Green S (1980) J. Chem. Phys. 73: 419

    Article  CAS  Google Scholar 

  98. Bohme DK, Adams NG, Mosesman M, Dunkin DB, Ferguson EE (1970) J. Chem. Phys. 52: 5094

    Article  CAS  Google Scholar 

  99. Munson MSB, Field FH, Franklin JL (1962) J. Chem. Phys. 37: 1790

    Article  CAS  Google Scholar 

  100. Adams NG, Bohme DK, Ferguson EE (1970) J. Chem. Phys. 52: 5101

    Article  CAS  Google Scholar 

  101. Milleur MB, Matcha RL, Hayes EF (1974) J. Chem. Phys. 60: 674

    Article  CAS  Google Scholar 

  102. Matcha RL, Milleur MB, Meier PF (1978) J. Chem. Phys. 68: 4748

    Article  CAS  Google Scholar 

  103. Matcha RL, Milleur MB (1978) J. Chem. Phys. 69: 3016

    Article  CAS  Google Scholar 

  104. Dykstra CE (1983) J. Mol. Struct. THEOCHEM 103: 131

    Article  Google Scholar 

  105. Matcha RL, Pettitt BM, Meier PF, Pendergast P (1978) J. Chem. Phys. 69: 2264

    Article  CAS  Google Scholar 

  106. Clampiti R, Jefferias DK (1970) Nature 226: 142

    Article  Google Scholar 

  107. (a) Leopold DG, Murray KK, Stevens Miller AE, Lineberger WC (1985) J. Chem. Phys. 83: 4849; (b) Bunker PR, Sears TJ (1985) J. Chem. Phys. 83: 4866

    Article  CAS  Google Scholar 

  108. For the problem of graphically illustrating A states see: Salem S (1982) Electrons in chemical reactions: First principles, Wiley, New York

    Google Scholar 

  109. The orbital terms in Fig. 15 correspond to heteronuclear diatomics XY. For homonuclear species XX, the 3σMO becomes Zσg orbital, 4σ becomes 2σu, etc. For simplicity reasons, we have used the heteronuclear notations throughout the text.

    Google Scholar 

  110. Kaul W, Fuchs R (1960) Z. Naturforschg. 15a: 326

    CAS  Google Scholar 

  111. Teng HH, Conway DC (1973) J. Chem. Phys. 59: 2316

    Article  CAS  Google Scholar 

  112. (a) The ground state of CCH+ is a triplet: (a) Krishnan R, Frisch M, Whiteside RA, Pople JA, Schleyer PVR (1981) J. Chem. Phys. 74: 4213; (b) Glaser R (1987) J. Am. Chem. Soc. 109: 4237

    Article  CAS  Google Scholar 

  113. The 1Π state is unstable, however, towards Renner distortion. The lowest lying singlet state of CCH+ has 1A′ symmetry and is 4.8 kcal/mol lower than 1Π: Koch W, Frenking G: J. Chem. Phys. (in print)

    Google Scholar 

  114. In Ref. 7, the binding energy of the He-C bond in HeCCH+ has been calculated using the 1Δ state of CCH+. However, the 1Π state of CCH+ was later [113] calculated to be lower-lying than the 1Δ state. The dissociation energy of HeCCH+ yielding He + (1Π)CCH+ is reported in Ref. 13

    Google Scholar 

  115. Ikuta S, Iwata S, Imamura M (1977) J. Chem. Phys. 66: 4671

    Article  CAS  Google Scholar 

  116. Snell AH, Pleasonton F (1958) J. Phys. Chem. 62: 1377

    Article  CAS  Google Scholar 

  117. Cacace F (1970) Adv. Phys. Org. Chem. 8: 79

    Article  CAS  Google Scholar 

  118. Wexler S, Anderson GR, Singer LA (1960) J. Chem. Phys. 32: 417

    Article  CAS  Google Scholar 

  119. (a) Carlson TA, White RM (1962) J. Chem. Phys. 36: 2883; (b) Carlson TA, White RM (1962) J. Chem. Phys. 39: 1748; (c) Carlson RT, White RM (1962) J. Chem. Phys. 38

    Article  CAS  Google Scholar 

  120. Holtz D, Beauchamp JL (1971) Science 173: 1237

    CAS  Google Scholar 

  121. See e.g., Gimarc BM (1979) Molecular structure and bonding, the qualitative molecular, orbital approach, Academic Press, New York

    Google Scholar 

  122. Holloway JH (1968) Noble gas chemistry, Methuen, London

    Google Scholar 

  123. Druyvesteyn MJ (1931) Nature 128: 1076

    CAS  Google Scholar 

  124. Heller R (1941) J. Chem. Phys. 9: 154

    Article  CAS  Google Scholar 

  125. (a) Manley JJ (1924) Nature 114: 861; (b) Manley JJ (1925) Nature 115: 337

    CAS  Google Scholar 

  126. Powell HM: J. Chem. Soc. 1948: 61

    Google Scholar 

  127. Davy H (1811) Phil. Trans. 101: 1

    Google Scholar 

  128. Mylius F: J. Chem. Soc. Abstracts 1886: 50

    Google Scholar 

  129. Palin DE, Powell HM: J. Chem. Soc. 1947: 208; (b) Palin DE, Powell HM: J. Chem. Soc. 1948: 571; (c) Palin DE, Powell HM: J. Chem. Soc. 1948: 815; (d) Rayner JH, Powell HM: J. Chem. Soc. 1952: 319; (e) Wallwork SC, Powell HM: J. Chem. Soc. 1956: 4855; (f) Lawton D, Powell HM: J. Chem. Soc. 1958: 471

    Google Scholar 

  130. Balek V (1970) Anal. Chem. 42: (9) 16A

    CAS  Google Scholar 

  131. (a) Hagan SMM (1962) Clathrate inclusion compounds, Reinhold, New York (b) Gawalek G (1969) Einschlußverbindungen, Additionsverbindungen, Clathrate. Deutscher Verlag der Wissenschaften, Berlin

    Google Scholar 

  132. Hagan SMM (1963) J. Chem. Educ. 40: 643

    Article  CAS  Google Scholar 

  133. (a) Adams RE, Browning WE, Ackley RD (1959) Ind. Eng. Chem. 51: 1467; (b) Steinberg M, Manowitz B (1959) Ind. Eng. Chem. 51: 47

    Article  CAS  Google Scholar 

  134. (a) Swift WE (1957) Nucleonis 15: 66; (b) Wilson EJ, Dibbs HP, Richards S, Eakins JD (1958) Nucleonics 16: 110

    CAS  Google Scholar 

  135. Mock JE (private communication) cited in: Mock JE, Myers JE, Trabant EA (1961) Ind. Eng. Chem. 53: 1007

    Article  CAS  Google Scholar 

  136. McClain JW, Diethorn WS (1963) J. Appl. Radiation and Isotopes 14: 527

    Article  CAS  Google Scholar 

  137. (a) Powell HM, Guter M (1949) Nature 164: 240; (b) Powell HM: J. Chem. Soc. 1950: 298

    CAS  Google Scholar 

  138. Powell HM: J. Chem. Soc. 1950: 300

    Google Scholar 

  139. Powell HM: J. Chem. Soc. 1950: 468

    Google Scholar 

  140. Mandelcorn L (ed) Non-stoichiometric compounds, Academic, New York, p 438

    Google Scholar 

  141. Villard P (1896) Compt. Rend 123: 377

    CAS  Google Scholar 

  142. (a) De Forcrand R (1923) Compt. Rend 176: 335; (b) De Forcrand R (1925) Compt. Rend 181: 15

    Google Scholar 

  143. van der Waals JH, Platteeuw JC (1959) Adv. Chem. Phys. 2: 1

    Google Scholar 

  144. Beurskens PT, Jeffrey GA (1964) J. Chem. Phys. 40: 906; and earlier papers cited therein

    Article  CAS  Google Scholar 

  145. Barrer RM (1964) In: Mandelcoin L (ed) Non-stoichiometric compounds, Academic, New York

    Google Scholar 

  146. Von Stackelberg M, Müller HR (1954) Z. Elektrochem. 58: 25

    Google Scholar 

  147. Davidson DW, Garg SK, Gough SR, Handa YP, Ratcliffe CI, Tse JS, Ripmeester JA (1984) J. Inclus. Phenom. 2: 231

    Article  CAS  Google Scholar 

  148. Lahr PH, Williams HL (1959) J. Phys. Chem. 63: 1432

    Article  CAS  Google Scholar 

  149. Barrer RM, Shanson VH: J. Chem. Soc. Chem. Commun. 1976: 333

    Google Scholar 

  150. Bolotin AB, Bolotin VA, Balyavichus M-LZ, Gantmakher BF, Stumbris EP, Tatevskii VM, Shapiro EI, Yaravoi SS (1982) Teor. Eksp. Khim 18: 212

    CAS  Google Scholar 

  151. Weber A (ed) (1987) Structure and dynamics of weakly bound molecular complexes, Reidel, Dordrecht

    Google Scholar 

  152. See the review articles in: (1988) Chemical Review 88

    Google Scholar 

  153. Van Lenthe JH, van Duijneneveldt-van der Rijdt JGCM, van Duijneveldt FB (1987) Adv. Chem. Phys. 69: 521

    Google Scholar 

  154. (a) Legon AC, Millen DJ (1986) Chem. Rev. 86: 635; (b) Peterson KI, Fraser GT, Nelson DD Jr, Klemperer W (1985) In: Bartlett RJ (ed) Comparison of ab initio quantum chemistry with experiment for small molecules, Reidel, Dordrecht

    Article  CAS  Google Scholar 

  155. English TC, Zorn JC, (1972) In: Williams D (ed) Methods of experimental physics, vol 3 (2nd edn), Academic, New York

    Google Scholar 

  156. Balle TJ, Campbell EJ, Keenam MR, Flygare WH (1979) J. Chem. Phys. 71: 2723

    Article  CAS  Google Scholar 

  157. (a) Levy DH (1981) In: Jortner J, Levine RD, Rice SA (eds) Photoselective chemistry, Wiley, New York; (b) Levy DH (1980) Annu. Rev. Phys. Chem. 31: 197

    Google Scholar 

  158. Hobza P, Schleyer PvR: Coll. Czech. Chem. Commun. (in print)

    Google Scholar 

  159. Reed AE, Curtiss LA, Weinhold F (1988) Chem. Rev. 88: 899

    Article  CAS  Google Scholar 

  160. Bachrach SM, Streitwieser A Jr (1984) J. Am. Chem. Soc. 106: 2283

    Article  CAS  Google Scholar 

  161. Mulliken RS (1955) J. Chem. Phys. 23: 1833

    Article  CAS  Google Scholar 

  162. Dykstra CE, Liu S-Y (1987) In: Weber A (ed) Structure and dynamics of weakly bound molecular complexes, Reidel, Dordrecht

    Google Scholar 

  163. Koch W, Frenking G (unpublished results)

    Google Scholar 

  164. Frenking G, Koch W, Collins JR: J. Chem. Soc., Chem. Commun. 1988: 1147; (b) Frenking G, Koch W, Cremer D, Gauss J, Collins JR (manuscript in preparation)

    Google Scholar 

  165. Hawkins DT, Falconer WE, Bartlett N (1978) Noble gas compounds, Plenum, New York

    Google Scholar 

  166. Booth HS, Willson KS (1935) J. Am. Chem. Soc. 57: 2273

    Article  CAS  Google Scholar 

  167. Janda KC, Bernstein LS, Steed JM, Novick SE, Klemperer W (1978) J. Am. Chem. Soc. 100: 8074

    Article  CAS  Google Scholar 

  168. (a) Kaufman JJ, Sachs LM (1970) J. Chem. Phys. 52: 3534; (b) Kaufman JJ, Sachs LM (1969) J. Chem. Phys. 51: 2992

    Article  CAS  Google Scholar 

  169. Hyman HH (ed) (1963) Noble gas compounds, University of Chicago press, Chicago

    Google Scholar 

  170. Selig H, Holloway JH (1984) Topics Current Chem. 124: 33

    CAS  Google Scholar 

  171. Miller TM, Bederson B (1977). Adv. At. Mol. Phys. 13: 1

    Article  CAS  Google Scholar 

  172. Dabrowski L, Herzberg G (1978) J. Mol. Spectrosc. 73: 183

    Article  CAS  Google Scholar 

  173. Liao MZ, Balasubramanian K, Chapman D, Lin SH (1987) Chem. Phys. 111: 423

    Article  CAS  Google Scholar 

  174. Dabrowski L, Herzberg G, Yoshino K (1981) J. Mol. Spectrosc. 89: 491

    Article  CAS  Google Scholar 

  175. Trevor DJ (1980) Ph. D. Thesis, University of California, Berkeley

    Google Scholar 

  176. Pratt ST, Dehmer PM (1982) J. Chem. Phys. 76: 3433

    Article  CAS  Google Scholar 

  177. Dehmer PM, Pratt ST (1982) J. Chem. Phys. 76: 843

    Article  CAS  Google Scholar 

  178. Dehmer PM, Pratt ST (1982) J. Chem. Phys. 77: 4804

    Article  CAS  Google Scholar 

  179. Pratt ST, Dehmer PM (1982) Chem. Phys. Lett. 87: 533

    Article  CAS  Google Scholar 

  180. Ng CY, Trevor DJ, Mahan BH, Lee YT (1976) J. Chem. Phys. 65: 4327

    Article  CAS  Google Scholar 

  181. Balasubramanian K, Liao MZ, Lin SH (1987) Chem. Phys. Lett. 138: 49

    Article  CAS  Google Scholar 

  182. Cline JI, Edvard DD, Reid BP, Sivakumar N, Thommen F, Janda KC (1987) In: Weber A (ed) Structure and dynamics of weakly bound molecular complexes, Reidel, Dordrecht

    Google Scholar 

  183. Beneventi L, Casacecchia P, Volpy GG (1987) In: Weber A (ed) Structure and dynamics of weakly bound molecular complexes, Reidel, Dordrecht

    Google Scholar 

  184. Estimated value by Miller JC (1987) J. Chem. Phys. 86: 3166

    Article  CAS  Google Scholar 

  185. Casavecchia P, Lagana A, Volpi GG (1984) Chem. Phys. Lett. 112: 445

    Article  CAS  Google Scholar 

  186. Pine AS (1987) In: Weber A (ed) Structure and dynamics of weakly bound molecular complexes, Reidel, Dordrecht

    Google Scholar 

  187. Fraser GT, Pine AS (1986) J. Chem. Phys. 85: 2502

    Article  CAS  Google Scholar 

  188. Howard BJ, Pine AS (1985) Chem. Phys. Lett. 122: 1

    Article  CAS  Google Scholar 

  189. Keenan, MR, Campbell EJ, Balle TJ, Buxton LW, Minton TK, Soper PD, Flygare WH (1980) J. Chem. Phys. 72: 3070

    Article  CAS  Google Scholar 

  190. Balle TJ, Campbell EJ, Keenan MR, Flygare WH (1979) J. Chem. Phys. 71: 2723

    Article  CAS  Google Scholar 

  191. Hutson JM, Howard BJ (1982) Molec. Phys. 45: 769

    Article  CAS  Google Scholar 

  192. A noble gas atom may become an electron acceptor (Lewis acid) in molecules if electronic charge is withdrawn by other atoms or ions. An example is provided by the recently synthesized first compound with a krypton-nitrogen bond HCN-KrF+AsF 6 . In KrF+, electronic charge is withdrawn from Kr and a donor-acceptor bond between Kr and HCN is formed, but here the (partially positively charged) Kr atom serves as electron acceptor and HCN (via the nitrogen lone-pair electrons) is the electron donor: Schrobilgen GJ: J. Chem. Soc. Chem. Commun. 1988: 863; MacDougall PJ, Schrobilgen GJ, Bader RFW (1989) Inorg. Chem. 28: 763

    Google Scholar 

  193. For a survey of the techniques and the method see: Bierbaum VM, Ellison GB, Leone SR (1984) In: Bowers MT (ed) Gas phase ion chemistry, vol 3, Academic, Orlando, p 2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Frenking, G., Cremer, D. (1990). The chemistry of the noble gas elements helium, neon, and argon — Experimental facts and theoretical predictions. In: Noble Gas and High Temperature Chemistry. Structure and Bonding, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-52124-0_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-52124-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52124-2

  • Online ISBN: 978-3-540-46880-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics