Skip to main content

Consistent Polynomial Identification in the Limit

  • Conference paper
  • First Online:
Algorithmic Learning Theory (ALT 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1501))

Included in the following conference series:

Abstract

This paper aims to extend well known results about polynomial update-time bounded learning strategies in a recursion theoretic setting.

We generalize the update-time complexity using the approach of Blum’s computational complexity measures.

It will turn out, that consistency is the first natural condition having a narrowing effect for arbitrary update boundaries. We show the existence of arbitrary hard, as well as an infinite chain of harder and harder consistent learnable sets. The complexity gap between consistent und inconsistent strategies solving the same problem can be arbitary large. We prove an exact characterization for polynomial consistent learnability, giving a deeper insight in the problem of hard consistent learnability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Barzdin. Inductive inference of automata, functions and programs. In Proceedings International Congress of Math., pages 455–460, Vancouver, 1974.

    Google Scholar 

  2. Balcazar, Diaz, Gavalda, and Watanabe. The query complexity of learning DFA. NEWGEN: New Generation Computing, 12, 1994.

    Google Scholar 

  3. M. Blum. A machine-independent theory of the complexity of recursive functions. In Journal of Association for Computing Machinery, volume 11, pages 322–336, April 1967.

    Google Scholar 

  4. R. P. Daley and C. H. Smith. On the complexity of inductive inference. In Information and Control, volume 69, pages 12–30, March 1986.

    Google Scholar 

  5. R. Freivalds, E. Kinber, and C.H. Smith. On the impact of forgetting on learning machines. Computer Science Technical Report Series CS-TR-3072, University of Maryland, College Park, MD, 20742, May 1993.

    Google Scholar 

  6. RŪsiņš Freivalds, E.m B. Kinber, and Carl H. Smith. On the intrinsic complexity of learning. Information and Computation, 123(1):64–71, 15 November 1995.

    Google Scholar 

  7. Michele Flammini. On the learnability of monotone kΜDNF formulae. Information Processing Letters, 52(3):167–173, 11 November 1994.

    Google Scholar 

  8. M. E. Gold. Limiting recursion. In Journal of Symbolic Logic, volume 30, pages 28–48, March 1965.

    Google Scholar 

  9. H. Ishizaka. Polynomial time learnability of simple deterministic languages. Machine Learning, 5(2):151–164, 1990. Special Issue on Computational Learning Theory; first appeared in 2nd COLT conference (1989).

    Google Scholar 

  10. K.P. Jantke and H.-R. Beick. Combining postulates of naturalness in inductive inference. In Elektronische Informationsverarbeitung und Kybernetik, volume 17, pages 465–484, 1984.

    MathSciNet  Google Scholar 

  11. S. Jain and A. Sharma. The structure of intrinsic complexity of learning. Lecture Notes in Computer Science, 904, 1995.

    Google Scholar 

  12. E. Kinber. Monotonicity versus efficiency for learning languages from texts. Lecture Notes in Computer Science, 872, 1994.

    Google Scholar 

  13. S. Lange and R. Wiehagen. Polynomial-time inference of arbitrary pattern languages. In New Generation Computing, volume 8, pages 361–370, 1991.

    Article  MATH  Google Scholar 

  14. S. Lange and T. Zeugmann. Trading monotonicity demands versus efficiency. Bulletin of Informatics and Cybernetics, 27:53–83, 1995.

    MATH  MathSciNet  Google Scholar 

  15. L. Pitt. Inductive inference, DFAs and computational complexity. In Proceedings of the Workshop Analogical and Inductive Inference, volume 397 of LNAI, pages 18–44, 1989.

    Google Scholar 

  16. L. Pitt and M. K. Warmuth. Prediction preserving reducibility. J. of Comput. Syst. Sci., 41(3):430–467, December 1990. Special issue of the for the Third Annual Conference of Structure in Complexity Theory (Washington, DC., June 88).

    Google Scholar 

  17. R. Solomono. A formal theory of inductive inference. In Information and Control, volume 7, pages 1–22

    Google Scholar 

  18. L.G. Valiant. A theory of the learnable. In Comm. Assoc. Comp. Math., volume 27(11), pages 1134–1142, 1984.

    MATH  Google Scholar 

  19. Osamu Watanabe. A framework for polynomial-time query learnability. Mathematical Systems Theory, 27(3):211–229, May/June 1994.

    Google Scholar 

  20. R. Wiehagen and W. Liepe. Charakteristische Eigenschaften von erkennbaren Klassen rekursiver Funktionen. In Elektronische Informationsverarbeitung und Kybernetik, volume 12, pages 421–436, 1976.

    MathSciNet  MATH  Google Scholar 

  21. R. Wiehagen and T. Zeugmann. Too much information can be too much for learning e.ciently. In 3rd Int. Workshop on Analogical and Inductive Inference, volume 642 of Lecture Notes in Artificial Intelligence, pages 72–86, 1992.

    Google Scholar 

  22. R. Wiehagen and T. Zeugamnn. Ignoring data may be the only way to learn efficiently. In Journal of Experimental and Theoretic Artifical Intelligence, volume 6, pages 131–144, 1994.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stein, W. (1998). Consistent Polynomial Identification in the Limit. In: Richter, M.M., Smith, C.H., Wiehagen, R., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 1998. Lecture Notes in Computer Science(), vol 1501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49730-7_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-49730-7_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65013-3

  • Online ISBN: 978-3-540-49730-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics