Skip to main content

Quantum Effects in Algorithms

  • Conference paper
  • First Online:
Quantum Computing and Quantum Communications (QCQC 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1509))

Abstract

We discuss some seemingly paradoxical yet valid effects of quantum physics in information processing. Firstly, we argue that the act of “doing nothing„ on part of an entangled quantum system is a highly non-trivial operation and that it is the essential ingredient underlying the computational speedup in the known quantum algorithms. Secondly, we show that the watched pot effect of quantum measurement theory gives the following novel computational possibility: suppose that we have a quantum computer with an on/off switch, programmed ready to solve a decision problem. Then (in certain circumstances) the mere fact that the computer would have given the answer if it were run, is enough for us to learn the answer, even though the computer is in fact not run.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jozsa, R., Proc. Roy. Soc. Lond. A 454, 323–337 (1998)

    MATH  MathSciNet  Google Scholar 

  2. Jozsa, R., “Entanglement and Quantum Computation„ in The Geometric Universe ed. S. Huggett, L. Mason, K. P. Tod, S. T. Tsou and N. Woodhouse. Oxford University Press. (Also available at http://xxx.lanl.gov as quant-ph/9707034.)

  3. Steane, A., Proc. Roy. Soc. Lond. A 452, 2551 (1996)

    MATH  MathSciNet  Google Scholar 

  4. Calderbank, A.R. and Shor, P. W., Phys. Rev. A 54, 1098 (1996)

    Article  Google Scholar 

  5. Gottesmann, D., Phys. Rev. A 54, 1862 (1996)

    Article  MathSciNet  Google Scholar 

  6. Ekert, A. and Jozsa, R., “Quantum Algorithms: Entanglement Enhanced Information Processing„ appearing in Phil. Trans. Roy. Soc. Lond. (1998). (Also available at http://xxx.lanl.gov as quant-ph/9803072)

  7. Barenco, A., Berthiaume, A., Deutsch, D., Ekert, A., Jozsa, R. and Macchiavello, C., S.I.A.M. Journal on Computing 26, 1541–1557 (1997)

    MATH  MathSciNet  Google Scholar 

  8. Deutsch, D., Proc. Roy. Soc. Lond. A 400, 97 (1985)

    MATH  MathSciNet  Google Scholar 

  9. Holevo, A. S., Probl. Inf. Transm. 9, 177 (1973)

    MathSciNet  Google Scholar 

  10. Deutsch, D. and Jozsa, R., Proc. Roy. Soc. Lond. A 439, 553–558 (1992)

    MATH  MathSciNet  Google Scholar 

  11. Simon, D., Proc. of 35th Annual Symposium on the Foundations of Computer Science, (IEEE Computer Society, Los Alamitos), p. 116 (1994) (Extended Abstract). Full version of this paper appears in S. I. A. M. Journal on Computing 26, 1474 (1997).

    Book  Google Scholar 

  12. Shor, P., Proc. of 35th Annual Symposium on the Foundations of Computer Science, (IEEE Computer Society, Los Alamitos), p. 124 (1994) (Extended Abstract). Full version of this paper appears in S. I. A. M. Journal on Computing 26 (Oct 1997) and is also available at LANL quant-ph preprint archive 9508027.

    Book  Google Scholar 

  13. Ekert, A. and Jozsa, R., Rev. Mod. Phys. 68, 733–753 (1996)

    Article  MathSciNet  Google Scholar 

  14. Maslen, D. K. and Rockmore, D. N., Generalised FFT’s — a Survey of Some Recent Results, in Proc. DIMACS Workshop on Groups and Computation — II (1995)

    Google Scholar 

  15. Grover, L. Proc. 28th Annual ACM Symposium on the Theory of Computing, (ACM Press, New York), p. 212–219 (1996)

    Google Scholar 

  16. Papadimitriou, C. H., Computational Complexity (Addison-Wesley, Reading, MA) (1994)

    MATH  Google Scholar 

  17. Hoyer, P., “Efficient Quantum Algorithmsrd, preprint available a quant-ph/9702028 (1997)

    Google Scholar 

  18. Cleve, R., Ekert, A., Macchiavello, C. and Mosca, M., Proc. Roy. Soc. Lond. A 454, 339–354 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Penrose, R.: Shadows of the Mind, Oxford University Press (1994)

    Google Scholar 

  20. Elitzur, A. C. and Vaidman, L., Found. of Phys. 23, 987–997 (1993)

    Article  Google Scholar 

  21. Kwiat, P. G., Weinfurter, H., Herzog, T., Zeilinger, A. and Kasevich, M. A., Phys. Rev. Lett. 74, 4763–4766 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jozsa, R. (1999). Quantum Effects in Algorithms. In: Williams, C.P. (eds) Quantum Computing and Quantum Communications. QCQC 1998. Lecture Notes in Computer Science, vol 1509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49208-9_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-49208-9_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65514-5

  • Online ISBN: 978-3-540-49208-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics