Skip to main content

Successful Design and Development of Genetically Engineered Saccharomyces Yeasts for Effective Cofermentation of Glucose and Xylose from Cellulosic Biomass to Fuel Ethanol

  • Chapter
  • First Online:
Recent Progress in Bioconversion of Lignocellulosics

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 65))

Abstract

Ethanol is an effective, environmentally friendly, nonfossil, transportation biofuel that produces far less pollution than gasoline. Furthermore, ethanol can be produced from plentiful, domestically available, renewable, cellulosic biomass. However, cellulosic biomass contains two major sugars, glucose and xylose, and a major obstacle in this process is that Saccharomyces yeasts, traditionally used and still the only microorganisms currently used for large scale industrial production of ethanol from glucose, are unable to ferment xylose to ethanol. This makes the use of these safest, most effective Saccharomyces yeasts for conversion of biomass to ethanol economically unfeasible. Since 1980, scientists worldwide have actively been trying to develop genetically engineered Saccharomyces yeasts to ferment xylose. In 1993, we achieved a historic breakthrough to succeed in the development of the first genetically engineered Saccharomyces yeasts that can effectively ferment both glucose and xylose to ethanol. This was accomplished by carefully redesigning the yeast metabolic pathway for fermenting xylose to ethanol, including cloning three xylose-metabolizing genes, modifying the genetic systems controlling gene expression, changing the dynamics of the carbon flow, etc. As a result, our recombinant yeasts not only can effectively ferment both glucose and xylose to ethanol when these sugars are present separately in the medium, but also can effectively coferment both glucose and xylose present in the same medium simultaneously to ethanol. This has made it possible because we have genetically engineered the Saccharomyces yeasts as such that they are able to overcome some of the natural barrier present in all microorganisms, such as the synthesis of the xylose metabolizing enzymes not to be affected by the presence of glucose and by the absence of xylose in the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jeffries TW (1985) Trends Biotechnol 3:208–212

    Article  CAS  Google Scholar 

  2. Horecker BL (1963) Pentose Metabolism in Bacteria, New York: John Wiley, New York, p 100

    Google Scholar 

  3. Chiang C, Knight SG (1960) Nature 188:79

    Article  CAS  Google Scholar 

  4. Gong CS, Chen LF, Flickinger MC, Chiang LC, Tsao GT (1981) Appl Environ Microbiol 41:430–436

    CAS  Google Scholar 

  5. Chiang LC, Hsiao HY, Ueng PP, Chen LF, Tsao GT (1981) Biotech Bioeng SymP 11:263–274

    CAS  Google Scholar 

  6. Rosenfeld S, Stevis P, Ho NWY (1984) Mol Gen Genetics 194:410–415

    Article  CAS  Google Scholar 

  7. Ho NWY, Stevis P, Rosenfeld S, Huang JJ, Tsao GT (1983) Biotechnol Bioengineering Symposium 13:245–250

    CAS  Google Scholar 

  8. Sarthy AV et al. (1987) Appl Environ Microb 53:1996–2000

    CAS  Google Scholar 

  9. Wilhelm M, Hollenberg CP (1984) The EMBO J 3:2555–2560

    CAS  Google Scholar 

  10. Amore R, Wilhelm M, Hollenberg CP (1989) Appl Mcirobiol Biotechnol 30:351–357

    Article  CAS  Google Scholar 

  11. Kötter P, Ciriacy M (1993) Appl Microbiol Biotechnol 38:776–783

    Article  Google Scholar 

  12. Walfridsson M, Anderlund M, Bao X, Hahn-Hagerdal B (1997) Appl Microbiol Biotechnol 48:218–224

    Article  CAS  Google Scholar 

  13. Tantirungkij M, Nakashima N, Seki T, Yoshida TJ (1993) Ferment Bioeng 75:83–88

    Article  CAS  Google Scholar 

  14. Ho NWY, Chen ZD, Brainard A (1993) Genetically engineered yeasts capable of effective fermentation of xylose to ethanol. P 738, Proceedings of Tenth International Symposium on Alcohol Fuels, Colorado Springs, CO, USA. Nov. 7–10

    Google Scholar 

  15. Ho NWY, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859

    CAS  Google Scholar 

  16. Takuma S, Nakashima N, Tantirungkij M, Kinoshita S, Okada H, Seki T, Yoshida T (1991) Appl Biochem Biotechnol 28/29:327–340

    Article  Google Scholar 

  17. Kotter P, Amore R, Hollenberg CP, Ciriacy M (1990) Curr Genet 18:493–500

    Article  CAS  Google Scholar 

  18. Ho NWY, Chang SF (1989) Enzyme Microb Technol 11:417–421

    Article  CAS  Google Scholar 

  19. Ho NWY, Tsao GT Recombinant yeasts for effective fermentation of glucose and xylose. U.S. patent #5,789,210, issued on 4 August, 1998

    Google Scholar 

  20. Burke RL, Tekamp-Olson P, Najarian R (1983) J Biol Chem 258:2193–2201

    CAS  Google Scholar 

  21. Bennetzen JL, Hall BD (1982) J Biol Chem 257:3018–3025

    CAS  Google Scholar 

  22. Ammerer G (1983) Methods Enzymol 101:192–201

    Article  CAS  Google Scholar 

  23. Moniruzzaman MB, Dien S, Skory CD, Chen ZD, Hespell RB, Ho NWY, Dale BE, Bothast RJ (1997) World J Microbiol Biotechnol 13:341–346

    Article  CAS  Google Scholar 

  24. Toon ST, Philippidis GP, Ho NWY, Chen ZD, Brainard A, Lumpkin RE, Riley C (1997) J Appl Biochem Biotechnol 63–65:243

    Article  Google Scholar 

  25. Deng XX, Ho NWY (1990) Appl Biochem. Biotechnol 24/25:193–199

    Article  Google Scholar 

  26. Ho NWY, Brainard A, Chen Z D ( 1997) Stable xylose-fermenting Saccharomyces yeasts for the conversion of cellulosic biomass to ethanol developed by using a new method for gene integration, presented at the AIChE annual meeting, Los Angeles, CA, Nov. 16–21

    Google Scholar 

  27. Lee N (1978) Molecular aspect for ara regulation. In: Miller J, Reznicoff W (eds) The Operon. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 389–409

    Google Scholar 

  28. Lee N, Gielow W, Martin R, Hamilton E, Fowler A (1986) Gene 47:231–244

    Article  CAS  Google Scholar 

  29. McMillan JD, Boynton BL (1994) Appl Biochem Biotechnol 45/46:569–584

    Article  Google Scholar 

  30. Dien BS, Kurtzman CP, Saha BC, Bothast RJ (1996) Appl Biochem Biotechnol 57/58:233–242

    Article  CAS  Google Scholar 

  31. Miller JH (1972) Experiments in molecular genetics. Cold Spring Laboratory, 48

    Google Scholar 

  32. Chen Zhengdao, Ho NWY (1993) Appl Biochem Biotechnol 39/40:135–147

    Article  Google Scholar 

  33. Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Appl Environ Microbiol 53:2420–2425

    CAS  Google Scholar 

  34. Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995) Science 267:240–243

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ho, N.W.Y., Chen, Z., Brainard, A.P., Sedlak, M. (1999). Successful Design and Development of Genetically Engineered Saccharomyces Yeasts for Effective Cofermentation of Glucose and Xylose from Cellulosic Biomass to Fuel Ethanol. In: Tsao, G.T., et al. Recent Progress in Bioconversion of Lignocellulosics. Advances in Biochemical Engineering/Biotechnology, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49194-5_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-49194-5_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65577-0

  • Online ISBN: 978-3-540-49194-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics