Skip to main content

A Finite Axiomatization of Inductive-Recursive Definitions

  • Conference paper
  • First Online:
Typed Lambda Calculi and Applications (TLCA 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1581))

Included in the following conference series:

Abstract

Induction-recursion is a schema which formalizes the principles for introducing new sets in Martin-Löf ’s type theory. It states that we may inductively define a set while simultaneously defining a function from this set into an arbitrary type by structural recursion. This extends the notion of an inductively defined set substantially and allows us to introduce universes and higher order universes (but not a Mahlo universe). In this article we give a finite axiomatization of inductive-recursive definitions. We prove consistency by constructing a set-theoretic model which makes use of one Mahlo cardinal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Dybjer. Inductive families. Formal Aspects of Computing, 6:440–465, 1994.

    Article  MATH  Google Scholar 

  2. E. Palmgren. On universes in type theory. To appear in: G. Sambin, and J. Smith, editors: Twenty-Five Years of Constructive Type Theory.

    Google Scholar 

  3. P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

    Google Scholar 

  4. P. Martin-Löf. An intuitionistic theory of types. In G. Sambin and J. Smith, editors, Twenty-Five Years of Constructive Type Theory. Oxford University Press, 1998. To appear. Reprinted version of an unpublished report from 1972.

    Google Scholar 

  5. P. Aczel. On relating type theories and set theories. Submitted to TYPES’ 98, LNCS, Springer-Verlag. 130, 144, 144

    Google Scholar 

  6. A. Setzer. A model for a type theory with Mahlo universe. Draft, 1996.

    Google Scholar 

  7. A. S. Troelstra. On the syntax of Martin-Löf’s type theories. Theoretical Computer Science, 51:1–26, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Setzer. Well-ordering proofs for Martin-Löf type theory. Annals of Pure and Applied Logic, 92:113–159, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  9. F. R. Drake. Set Theory-an Introduction to Large Cardinals. North Holland, 1974.

    Google Scholar 

  10. A. Setzer. Extending Martin-Löf Type Theory by one Mahlo-universe. To appear in Archive for Mathematical Logic.

    Google Scholar 

  11. P. F. Mendler. Predicative type universes and primitive recursion. In Proceedings Sixth Annual Synposium on Logic in Computer Science. IEEE Computer Society Press, 1991.

    Google Scholar 

  12. S. Allen. A Non-Type-Theoretic Semantics for Type-Theoretic Language. PhD thesis, Department of Computer Science, Cornell University, 1987.

    Google Scholar 

  13. E. Griffor and M. Rathjen. The strength of some Martin-Löf type theories. Archive for Mathematical Logic, 33:347–385, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  14. T. Coquand and C. Paulin. Inductively defined types, preliminary version. In LNCS 417, COLOG’ 88, International Conference on Computer Logic. Springer-Verlag, 1990.

    Google Scholar 

  15. J. Cederquist. Pointfree Approach to Constructive Analysis in Type Theory. PhD thesis, Department of Computing Science, Chalmers University of Technology and University of Göteborg, 1997.

    Google Scholar 

  16. C. Paulin-Mohring. Inductive definitions in the system Coq-rules and properties. In Proceedings Typed λ-Calculus and Applications, pages 328–245. Springer-Verlag, LNCS, March 1993.

    Chapter  Google Scholar 

  17. P. Martin-Löf. Hauptsatz for the intuitionistic theory of iterated inductive definitions. In J. E. Fenstad, editor, Proceedings of the Second Scandinavian Logic Symposium, pages 179–216. North-Holland, 1971.

    Google Scholar 

  18. P. Dybjer. A general formulation of simultaneous inductive-recursive definitions in type theory. To appear in Journal of Symbolic Logic. 129, 129, 129, 130, 130, 131, 136, 138, 138, 143, 145

    Google Scholar 

  19. R. Backhouse. On the meaning and construction of the rules in Martin-Löf’s theory of types. In A. Avron, B. Harper, F. Honsell, I. Mason, and G. Plotkin, editors, Proceedings of the Workshop on General Logic, Edinburgh, February 1987. Laboratory for Foundations of Computer Science, Department of Computer Science, University of Edinburgh, 1988. ECS-LFCS-88-52.

    Google Scholar 

  20. P. Dybjer. Inductive sets and families in Martin-Löf’s type theory and their settheoretic semantics. In G. Huet and G. Plotkin, editors, Logical Frameworks, pages 280–306. Cambridge University Press, 1991.

    Google Scholar 

  21. B. Nordström, K. Petersson, and J. Smith. Programming in Martin-Löf’ s Type Theory: an Introduction. Oxford University Press, 1990.

    Google Scholar 

  22. E. Palmgren. On Fixed Point Operators, Inductive Definitions and Universes in Martin-Löf’ s Type Theory. PhD thesis, Uppsala University, 1991.

    Google Scholar 

  23. M. Rathjen, E. R. Griffor, and E. Palmgren. Inaccessibility in constructive set theory and type theory. Annals of Pure and Applied Logic, 94:181–200, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Setzer. Proof theoretical strength of Martin-Löf Type Theory with W-type and one universe. PhD thesis, Fakultät für Mathematik der Ludwig-Maximilians-Universität München, 1993.

    MATH  Google Scholar 

  25. A. Setzer. An upper bound for the proof theoretical strength of Martin-Löf Type Theory with W-type and one Universe. Draft, 1996.

    Google Scholar 

  26. A. Setzer. Proof theoretical strength of Martin-Löf Type Theory with W-type and one universe. PhD thesis, Universität München, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dybjer, P., Setzer, A. (1999). A Finite Axiomatization of Inductive-Recursive Definitions. In: Girard, JY. (eds) Typed Lambda Calculi and Applications. TLCA 1999. Lecture Notes in Computer Science, vol 1581. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48959-2_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-48959-2_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65763-7

  • Online ISBN: 978-3-540-48959-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics