Skip to main content

Communication as an Emergent Metaphor for Neuronal Operation

  • Conference paper
  • First Online:
Computation for Metaphors, Analogy, and Agents (CMAA 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1562))

Abstract

The conventional computational description of brain operations has to be understood in a metaphorical sense. In this paper arguments supporting the claim that this metaphor is too restrictive are presented. A new metaphor more accurately describing recently discovered emergent characteristics of neuron functionality is proposed and its implications are discussed. A connectionist system fitting the new paradigm is presented and its use for attention modelling briefly outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCulloch, W.S., Pitts, W.: A logical calculus immanent in nervous activity. Bulletin of Mathematical Biophysics 5 (1943) 115–133.

    Article  MATH  MathSciNet  Google Scholar 

  2. Rosenblatt, F.: Principles of Neurodynamics. Spartan Books, Washington DC (1962)

    MATH  Google Scholar 

  3. Poggio, T., Girosi, F.: Networks for approximation and learning. Proceedings of the IEEE 78 (1990) 1481–1497.

    Article  Google Scholar 

  4. Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan, New York (1994)

    MATH  Google Scholar 

  5. Rumelhart, D.E., McClelland, J.L. (eds.): Parallel Distributed Processing. Explorations in the Microstructure of Cognition, MIT Press, Cambridge MA (1986).

    Google Scholar 

  6. Fukushima, K.: Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural Networks 1 (1988) 119–130.

    Article  Google Scholar 

  7. Selman, B. et al.: Challenge Problems for Artificial Intelligence. Proceedings of AAAI-96, National Conference on Aritifical Intelligence, AAAI Press, 1996.

    Google Scholar 

  8. Sejnowski, T.J., Rosenberg, C.R.: Parallel networks that learn to pronounce English text. Complex Systems 1 (1987) 145–168.

    MATH  Google Scholar 

  9. Fodor, J., Pylyshyn, Z.W.: Connectionism and Cognitive Architecture: A Critical Analysis. In: Boden, M.A. (ed.): The Philosophy of Artificial Intelligence, Oxford University Press (1990).

    Google Scholar 

  10. Barnden, J., Pollack, J. (eds.): High-Level Connectionist Models, Ablex: Norwood, NJ, (1990).

    Google Scholar 

  11. Pinker, S., Prince, A.: On Language and Connectionism: Analysis of a Parallel Distributed Processing Model of Language Acquisition. In: Pinker, S., Mahler, J. (eds.): Connections and Symbols, MIT Press, Cambridge MA, (1988).

    Google Scholar 

  12. Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the EM algorithm. MIT Comp. Cog. Sci. Tech. Report 9301 (1993).

    Google Scholar 

  13. Shepherd, G.M.: The Synaptic Organisation of the Brain. Oxford University Press, London Toronto (1974).

    Google Scholar 

  14. Friston, K.J.: Transients, Metastability, and Neuronal Dynamics. Neuroimage 5 (1997) 164–171.

    Article  Google Scholar 

  15. Fodor, J.A.: The Modularity of Mind. MIT Press (1983).

    Google Scholar 

  16. Mumford, D.: Neural Architectures for Pattern-theoretic Problems. In: Koch, Ch., Davies, J.L. (eds.): Large Scale Neuronal Theories of the Brain. The MIT Press, London,England (1994).

    Google Scholar 

  17. Farah, M.: Neuropsychological inference with an interactive brain: A critique of the locality assumption. Behavioural and Brain Sciences (1993).

    Google Scholar 

  18. Wegner, P.: Why Interaction is More Powerful then Algorithms. CACM May (1997).

    Google Scholar 

  19. Koch, C.: Computation and the single neuron. Nature 385 (1997) 207–210.

    Article  Google Scholar 

  20. Barlow, H.: Intraneuronal information processing, directional selectivity and memory for spatio-temporal sequences. Network: Computation in Neural Systems 7 (1996) 251–259.

    Article  Google Scholar 

  21. Granger, R., et al.: Non-Hebbian properties of long-term potentiation enable high-capacity encoding of temporal sequences. Proc. Natl. Acad. Sci. USA Oct (1991) 10104–10108.

    Google Scholar 

  22. Thomson, A.M.: More Than Just Frequency Detectors ?. Science 275 Jan (1997) 179–180.

    Google Scholar 

  23. Sejnowski, T.J.: Time for a new neural code?, Nature 376 (1995) 21–22.

    Article  Google Scholar 

  24. Koenig, P., et al.: Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci. 19(4) (1996) 130–137.

    Article  Google Scholar 

  25. Perret, D.I., et al.: Visual neurons responsive to faces in the monkey temporal cortex. Experimental Brain Research 47 (1982) 329–342.

    Article  Google Scholar 

  26. Rolls, E.T., Tovee, M.J.: Processing speed in the cerebral cortex and the neurophysiology of visual backward masking. Proc. Roy. Soc. B 257 (1994) 9–15.

    Article  Google Scholar 

  27. Thorpe, S.J., Imbert, M.: Biological constraints on connectionist modelling. In: Pfeifer, R., et al. (eds.): Connectionism in Perspective. Elsevier (1989).

    Google Scholar 

  28. Softky, W.R., Koch, Ch.: The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSP. J. of Neurosci. 13 (1993) 334–350.

    Google Scholar 

  29. Berry, M. J., et al.: The structure and precision of retinal spike trains. Proc. Natl. Acad. Sci. USA 94 (1997) 5411–5416.

    Article  Google Scholar 

  30. Mainen, Z.F., Sejnowski, T.J.: Reliability of spike timing in neocortical neurons. Science 168 (1995) 1503–1506.

    Article  Google Scholar 

  31. Nelson, J.I.: Visual Scene Perception: Neurophysiology. In: Arbib, M.A. (ed.): The Handbook of Brain Theory and Neural Networks. MIT Press: Cambridge MA (1995).

    Google Scholar 

  32. Nelson, J.I.: Binding in the Visual System. In: Arbib, M.A. (Ed.): The Handbook of Brain Theory and Neural Networks, MIT Press, Cambridge MA (1995).

    Google Scholar 

  33. Brown, R.: Social Psychology. Free Press, New York (1965).

    Google Scholar 

  34. Douglas, R.J., Martin, K.A.C.: Exploring cortical microcircuits. In: McKenna, Davis, Zornetzer, (eds.): Single Neuron Computation. Academic Press (1992).

    Google Scholar 

  35. Barlow, H.B.: Single units and sensation: A neuron doctrine for perceptual psychology?. Perception 1 371–394.

    Google Scholar 

  36. Nasuto, S.J., Bishop, J.M.: Bivariate Processing with Spiking Neuron Stochastic Diffusion Search Network. Neural Processing Letters (at review).

    Google Scholar 

  37. Bishop, J.M.: Stochastic Searching Networks. Proc. 1 st IEE Conf. Artificial Neural Networks, pp. 329–331, London (1989).

    Google Scholar 

  38. Nasuto, S.J., Bishop, J.M.: Convergence Analysis of a Stochastic Diffusion Search. Parallel Algorithms and Applications (in press).

    Google Scholar 

  39. Nasuto, S.J., Bishop, J.M, Lauria, S.: Time Complexity Analysis of Stochastic Diffusion Search, Proc. Neural Computation Conf., Vienna, Austria (1998).

    Google Scholar 

  40. vanLeeuven, J. (ed.): Handbook of Theoretical Computer Science. MIT Press: Amsterdam (1990).

    Google Scholar 

  41. Treisman, A.: Features and Objects: The fourteenth Bartlett Memorial Lecture. The Quarterly Journal of Experimental Psychology 40A(2) (1998) 201–237.

    Google Scholar 

  42. Cowey, A.: Cortical Visual Areas and the Neurobiology of Higher Visual Processes. In: Farah, M.J., Ratcliff, G. (eds.): The Neuropsychology of High-Level Vision. LEA Publishers (1994).

    Google Scholar 

  43. Spillmann, L., Werner, J.S.: Long range interactions in visual perception. Trends Neurosci. 19(10) (1996) 428–434.

    Google Scholar 

  44. McCrone, J.: Wild minds. New Scientist 13 Dec (1997) 26–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nasuto, S.J., Dautenhahn, K., Bishop, M. (1999). Communication as an Emergent Metaphor for Neuronal Operation. In: Nehaniv, C.L. (eds) Computation for Metaphors, Analogy, and Agents. CMAA 1998. Lecture Notes in Computer Science(), vol 1562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48834-0_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-48834-0_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65959-4

  • Online ISBN: 978-3-540-48834-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics