Skip to main content

Binary Tomography for Triplane Cardiography

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1613))

Abstract

The problem of reconstructing a binary image (usually an image in the plane and not necessarily on a Cartesian grid) from a few projections translates into the problem of solving a system of equations which is very underdetermined and leads in general to a large class of solutions. It is desirable to limit the class of possible solutions, by using appropriate prior information, to only those which are reasonably typical of the class of images which contains the unknown image that we wish to reconstruct. One may indeed pose the following hypothesis: if the image is a typical member of a class of images having a certain distribution, then by using this information we can limit the class of possible solutions to only those which are close to the given unknown image. This hypothesis is experimentally validated for the specific case of a class of binary images representing cardiac cross-sections, where the probability of the occurrence of a particular image of the class is determined by a Gibbs distribution and reconstruction is to be done from the three noisy projections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Herman, G.T., Kuba, A. (eds.): Special Issue on Discrete Tomography. Int. J Imaging Syst. and Technol. 9 No. 2/3 (1998)

    Google Scholar 

  2. Chang, S.-K., Chow, C. K.: The Reconstruction of Three-Dimensional Objects from Two Orthogonal Projections and its Application to Cardiac Cineangiography. IEEE Trans. on Computers 22 (1973) 18–28

    Article  Google Scholar 

  3. Fishburn, P., Schwander, P., Shepp, L., Vanderbei, R.J.: The Discrete Radon Transform and its Approximate Inversion via Linear Programming. Discrete Applied Mathematics 75 (1997) 39–61

    Article  MATH  MathSciNet  Google Scholar 

  4. Chan, M.T., Herman, G.T., Levitan, E.: A Bayesian Approach to PET Reconstruction Using Image-Modeling Gibbs Priors: Implementation and Comparison. IEEE Trans. Nucl. Sci. 44 (1997) 1347–1354

    Article  Google Scholar 

  5. Winkler, G.: Image Analysis, Random Fields and Dynamic Monte Carlo Methods. Springer-Verlag, Berlin Heidelberg New York (1995)

    MATH  Google Scholar 

  6. Levitan, E., Chan, M., Herman, G.T.: Image-Modeling Gibbs Priors. Graph. Models Image Proc. 57 (1995) 117–130

    Article  Google Scholar 

  7. Matej, S., Vardi, A., Herman, G.T., Vardi, E.: Binary Tomography Using Gibbs Priors. In Herman, G.T., Kuba, A. (eds.): Discrete Tomography: Foundations, Algorithms and Applications. Birkhauser, Boston Cambridge (to appear)

    Google Scholar 

  8. Ryser, H.J.: Combinatorial Properties of Matrices of Zeros and Ones. Can. J. Mathematics 9 (1957) 371–377

    MATH  MathSciNet  Google Scholar 

  9. Kong, T.Y., Herman, G.T.: Tomographic Equivalence and Switching Operations. In Herman, G.T., Kuba, A. (eds.): Discrete Tomography: Foundations, Algorithms and Applications. Birkhauser, Boston Cambridge (to appear)

    Google Scholar 

  10. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of State Calculations by Fast Computing Machines. J. Chem. Phys. 21, (1953) 1087–1092

    Article  Google Scholar 

  11. Ritman, E.L., Robb, R.A., Harris, L.D.: Imaging Physiological Functions. Praeger, New York (1985)

    Google Scholar 

  12. Browne, J.A., Herman, G.T., Odhner, D.: SNARK93: A Programming System for Image Reconstruction from Projections. Technical Report No. 198. Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carvalho, B.M., Herman, G.T., Matej, S., Salzberg, C., Vardi, E. (1999). Binary Tomography for Triplane Cardiography. In: Kuba, A., Šáamal, M., Todd-Pokropek, A. (eds) Information Processing in Medical Imaging. IPMI 1999. Lecture Notes in Computer Science, vol 1613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48714-X_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-48714-X_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66167-2

  • Online ISBN: 978-3-540-48714-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics