Skip to main content

Registration of Cortical Anatomical Structures via Robust 3D Point Matching

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1613))

Abstract

Inter-subject non-rigid registration of cortical anatomical structures as seen in MR is a challenging problem. The variability of the sulcal and gyral patterns across patients makes the task of registration especially difficult regardless of whether voxel- or feature-based techniques are used. In this paper, we present an approach to matching sulcal point features interactively extracted by neuroanatomical experts. The robust point matching (RPM) algorithm is used to find the optimal affine transformations for matching sulcal points. A 3D linearly interpolated non-rigid warping is then generated for the original image volume. We present quantitative and visual comparisons between Talairach, mutual information-based volumetric matching and RPM on five subjects’ MR images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besl, P.J. and McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Patt. Anal. Mach. Intell. 14(2) (1992) 239–256

    Article  Google Scholar 

  2. Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. Patt. Anal. Mach. Intell. 11(6) (1989) 567–585

    Article  MATH  Google Scholar 

  3. Borgefors, G.: Hierarchical chamfer matching: a parametric edge matching algorithm. IEEE Trans. Patt. Anal. Mach. Intell. 10(6) (1988) 849–865

    Article  Google Scholar 

  4. Christensen, G., Joshi, S., Miller, M.: Volumetric transformation of brain anatomy. IEEE Trans. Med. Imag. 16(6) (1997) 864–877

    Article  Google Scholar 

  5. Collins, D., Goualher, G., Evans, A.: Non-linear cerebral registration with sulcal constraints. Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science volume 1496 (1988) 974–984

    Chapter  Google Scholar 

  6. Collins, D., Holmes, C., Peters, T., Evans, A.: Automatic 3D model-based neuro-anatomical segmentation. Human Brain Mapping 3(3) (1995) 190–208

    Article  Google Scholar 

  7. Cootes, T., Taylor, C., Cooper, D., and Graham, J.: Active shape models: Their training and application. Computer Vision and Image Understanding 61(1) (1995) 38–59

    Article  Google Scholar 

  8. Davatzikos, C.: Spatial transformation and registration of brain images using elastically deformable models. Computer Vision and Image Understanding: Special Issue on Medical Imaging 6(2) (1997) 207–222

    Article  Google Scholar 

  9. Feldmar, J., Ayache, N.: Rigid, affine and locally affine registration of free-form surfaces. Intl. J. Computer Vision 18(2) (1996) 99–119

    Article  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness. Freeman, W.H., San Francisco, CA (1979)

    MATH  Google Scholar 

  11. Gold S., Rangarajan A., Lu, C.P., Pappu, S., Mjolsness, E.: New algorithms for 2-D and 3-D point matching: pose estimation and correspondence. Pattern Recognition 31(8) (1998) 1019–1031

    Article  Google Scholar 

  12. Goodall, C.: Procrustes methods in the statistical analysis of shape. J. R. Statist. Soc. B 53(2) (1991) 285–339

    MATH  MathSciNet  Google Scholar 

  13. Lohmann, G., von Cramon D.: Sulcal basin and sulcal strings as new concepts for describing the human cortical topography. Workshop on Biomedical Image Analysis, IEEE Press (1998) 41–54

    Google Scholar 

  14. Luenberger, D.: Linear and Nonlinear Programming. Addison-Wesley, Reading, MA (1984)

    MATH  Google Scholar 

  15. Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J.: A probabilistic atlas of the human brain: theory and rationale for its development. NeuroImage 2(2) (1995) 89–101

    Article  Google Scholar 

  16. Pappu, S., Gold, S., Rangarajan, A.: A framework for non-rigid matching and correspondence. Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA 8 (1996) 795–801

    Google Scholar 

  17. Rambo, J., Zeng, X., Schultz, R., Win, L., Staib, L., Duncan, J.: Platform for visualization and measurement of gray matter volume and surface area within discrete cortical regions from MR images. NeuroImage 7(4) (1998) 795

    Google Scholar 

  18. Rangarajan, A., Chui, H., Bookstein, F.: The softassign Procrustes matching algorithm. Information Processing in Medical Imaging (IPMI’ 97), Springer (1997) 29–42

    Google Scholar 

  19. Rangarajan, A., Chui, H., Duncan, J.: Rigid point feature registration using mutual information. Medical Image Analysis (1999) (accepted).

    Google Scholar 

  20. Rangarajan, A., Chui, H., Mjolsness, E., Pappu, S., Davachi, L., Goldman-Rakic, P., Duncan, J.: A robust point matching algorithm for autoradiograph alignment. Medical Image Analysis 4(1) (1997) 379–398

    Article  Google Scholar 

  21. Redner, R.A., Walker, H.F.: Mixture densities, maximum likelihood and the EM algorithm. SIAM Review 26(2) (1984) 195–239

    Article  MATH  MathSciNet  Google Scholar 

  22. Sandor, S., Leahy, R.: Surface based labeling of cortical anatomy using a deformable atlas. IEEE Trans. Med. Imag. 16(1) (1997) 41–54

    Article  Google Scholar 

  23. Studholme, C., Hill, D., Hawkes, D.: An overlap invariant entropy measure of 3d medical image alignment. Pattern Recognition 32 (1999) 71–86

    Article  Google Scholar 

  24. Thompson, P., Toga, A.W.: A surface-based technique for warping three-dimensional images of the brain. IEEE Trans. Med. Imag. 5(4) (1996) 402–417

    Article  Google Scholar 

  25. Toga, A., Mazziotta, J.: Brain Mapping: The Methods. Academic Press (1996)

    Google Scholar 

  26. Vaillant, M., Davatzikos, C., Bryan, R.: Finding 3D parametric representations of the deep cortical folds. Proc. of the Workshop on Mathematical Methods in Biomedical Image Analysis, IEEE Computer Society Press (1996) 151–159

    Google Scholar 

  27. Yuille, A.L.: Generalized deformable models, statistical physics, and matching problems. Neural Computation 2(1) (1990) 1–24

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chui, H., Rambo, J., Duncan, J., Schultz, R., Rangarajan, A. (1999). Registration of Cortical Anatomical Structures via Robust 3D Point Matching. In: Kuba, A., Šáamal, M., Todd-Pokropek, A. (eds) Information Processing in Medical Imaging. IPMI 1999. Lecture Notes in Computer Science, vol 1613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48714-X_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-48714-X_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66167-2

  • Online ISBN: 978-3-540-48714-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics