Skip to main content

On the Complexity of Recognizing the Hilbert Basis of a Linear Diophantine System

  • Conference paper
Mathematical Foundations of Computer Science 1999 (MFCS 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1672))

Abstract

The problem of computing the Hilbert basis of a linear Diophantine system over nonnegative integers is often considered in automated deduction and integer programming. In automated deduction, the Hilbert basis of a corresponding system serves to compute the minimal complete set of associative-commutative unifiers, whereas in integer programming the Hilbert bases are tightly connected to integer polyhedra and to the notion of total dual integrality. In this paper, we sharpen the previously known result that the problem, asking whether a given solution belongs to the Hilbert basis of a given system, is coNP-complete. We show that the problem has a pseudopolynomial algorithm if the number of equations in the system is fixed, but it is coNP-complete in the strong sense if the given system is unbounded. This result is important in the scope of automated deduction, where the input is given in unary and therefore the previously known coNP-completeness result was unusable. Moreover, we prove that, given a linear Diophantine system and a set of solutions, asking whether this set constitutes the Hilbert basis of the system, is also coNP-complete in the strong sense, answering this way an open problem formulated by Henk and Weismantel in 1996. Our result also allows us to solve another open problem, formulated by Edmonds and Giles in 1982, where we prove that asking whether a given set of vectors constitutes the Hilbert basis of an unknown linear Diophantine system, is coNP-complete in the strong sense.

Part of this work was done while the first author was a lecturer (ATER) at IUT A of the Université Nancy 2, France. The full version with proofs is available at URL = http://www.loria.fr/~hermann/publications/recog.ps.gz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Contejean and H. Devie. An efficient incremental algorithm for solving systems of linear Diophantine equations. Information and Computation, 113(1):143–172, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Clausen and A. Fortenbacher. Efficient solution of linear Diophantine equations. Journal of Symbolic Computation, 8(1–2):201–216, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Domenjoud. Solving systems of linear Diophantine equations: An algebraic approach. In A. Tarlecki, ed., Proceedings 16th MFCS, Kazimierz Dolny (Poland), LNCS 520, pages 141–150. Springer, 1991.

    Google Scholar 

  4. J. Edmonds and R. Giles. Total dual integrality of linear inequality systems. In W. R. Pulleyblank, ed., Proceedings Progress in Combinatorial Optimization, Waterloo (Ontario, Canada), pages 324–333. Academic Press, 1982.

    Google Scholar 

  5. M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory of NP-completeness. W.H. Freeman and Co, 1979.

    Google Scholar 

  6. P. Gordan. Ueber die Auflösung linearen Gleichungen mit reellen Coefficienten. Mathematische Annalen, 6:23–28, 1873.

    Article  MathSciNet  Google Scholar 

  7. D. Hilbert. Ueber die Theorie der algebraischen Formen. Mathematische Annalen, 36:473–534, 1890.

    Article  MathSciNet  Google Scholar 

  8. G. Huet. An algorithm to generate the basis of solutions to homogeneous linear Diophantine equations. Inf. Proc. Letters, 7(3):144–147, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Henk and R. Weismantel. On Hilbert bases of polyhedral cones. Preprint SC 96-12, Konrad-Zuse-Zentrum für Informationstechnik, Berlin, April 1996. URL = http://www.zib.de/bib/pub/pw/index.en.html.

  10. R. Kannan and A. Bachem. Algorithms for computing the Smith and Hermite normal forms of an integer matrix. SIAM J. Computing, 8(4):499–507, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  11. J.-L. Lambert. Une borne pour les générateurs des solutions entières positives d’une équation diophantienne linéaire. Compte-rendus de l’Académie des Sciences de Paris, 305(1):39–40, 1987.

    MATH  MathSciNet  Google Scholar 

  12. D. Lankford. Non-negative integer basis algorithms for linear equations with integer coefficients. Journal of Automated Reasoning, 5(1):25–35, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  13. C. H. Papadimitriou. On the complexity of integer programming. Journal of the Association for Computing Machinery, 28(4):765–768, 1981.

    MATH  MathSciNet  Google Scholar 

  14. C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

    Google Scholar 

  15. A. Schrijver. Theory of linear and integer programming. Wiley, 1986.

    Google Scholar 

  16. A. Sebő. Hilbert bases, Carathéodory’s theorem and combinatorial optimization. In R. Kannan and W. R. Pulleyblank, eds., Proc. 1st IPCO, Waterloo (Ontario, Canada), pages 431–455. University of Waterloo Press, May 1990.

    Google Scholar 

  17. M. Stickel. A unification algorithm for associative-commutative functions. Journal of the Association for Computing Machinery, 28(3):423–434, 1981.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Durand, A., Hermann, M., Juban, L. (1999). On the Complexity of Recognizing the Hilbert Basis of a Linear Diophantine System. In: Kutyłowski, M., Pacholski, L., Wierzbicki, T. (eds) Mathematical Foundations of Computer Science 1999. MFCS 1999. Lecture Notes in Computer Science, vol 1672. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48340-3_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-48340-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66408-6

  • Online ISBN: 978-3-540-48340-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics