Skip to main content

The Arithmetical Hierarchy of Real Numbers

  • Conference paper
Mathematical Foundations of Computer Science 1999 (MFCS 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1672))

Abstract

A real number is computable if it is the limit of an effectively converging computable sequence of rational numbers, and left (right) computable if it is the supremum (infimum) of a computable sequence of rational numbers. By applying the operations “sup” and “inf” alternately n times to computable (multiple) sequences of rational numbers we introduce a non-collapsing hierarchy Σ n , Π n , Δ n : n ∈ ℕ of real numbers. We characterize the classes Σ 2 Π 2 and Δ 2 in various ways and give several interesting examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Ambos-Spies. A note on recursively approximatable real numbers, Forschungsberichte Mathematische Logik, Mathematisches Institut, Universität Heidelberg. Nr. 38, 1998.

    Google Scholar 

  2. O. Demuth and P. Filipec. Differentiation of constructive functions of a real variable and relative computability, in Mathematical Logic and Its Applications, D. G. Skordev ed., Plenum Press, New York and Londin, 1987, pp 81–106.

    Google Scholar 

  3. H. S. Gaskill and P. P. Narayanaswami Elementary of Real Analysis, Prentice-Hall, Upper Saddle River, 1997.

    Google Scholar 

  4. A. Grzegorczyk. On the definitions of computable real continuous functions, Fund. Math. 44(1957), 61–71.

    MATH  MathSciNet  Google Scholar 

  5. Chun-Kuen Ho. Relatively recursive real numbers and real functions, Technical Report of Department of Computer Science, University of Chicago 94-02. 1994.

    Google Scholar 

  6. L. Hudes. Hyperarithmetical real numbers and hyperarithmetical analysis, Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, Mass. 1962.

    Google Scholar 

  7. S. K. Kleene. Recursive predicates and quantifiers, Trans. Amer. Math. Soc. 53(1943), 41–73.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Mazur. Computable Analysis. PWN: Warsaw, 1963.

    Google Scholar 

  9. P. Odifreddi. Classical Recursion Theory, vol. 129 of Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdan, 1989.

    MATH  Google Scholar 

  10. M. Pour-El and J. Richards. Computability in Analysis and Physics. Springer-Verlag, Berlin, Heidelberg, 1989.

    MATH  Google Scholar 

  11. J. R. Shoenfiled. On degrees of unsolvability, Ann. Math. 69(1959) 644–653.

    Article  Google Scholar 

  12. R. Soare. Recursively Enumerable Sets and Degrees, Springer-Verlag, Berlin, Heidelberg, 1987.

    Google Scholar 

  13. E. Specker. Nicht konstruktiv beweisbare Sätze der Analysis, J. of Symbolic Logic 14(1949), 145–158.

    Article  MATH  MathSciNet  Google Scholar 

  14. K. Weihrauch. Computability. EATCS Monographs on Theoretical Computer Science Vol. 9, Springer-Verlag, Berlin, Heidelberg, 1987.

    MATH  Google Scholar 

  15. K. Weihrauch. An Introduction to Computable Analysis. (In Preparation.)

    Google Scholar 

  16. K. Weihrauch and X. Zheng. A finite hierarchy of recursively enumerable real numbers, MFCS’98, Brno, Czech Republic, August 24–28, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, X., Weihrauch, K. (1999). The Arithmetical Hierarchy of Real Numbers. In: Kutyłowski, M., Pacholski, L., Wierzbicki, T. (eds) Mathematical Foundations of Computer Science 1999. MFCS 1999. Lecture Notes in Computer Science, vol 1672. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48340-3_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-48340-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66408-6

  • Online ISBN: 978-3-540-48340-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics