Skip to main content

On Tractable Queries and Constraints

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1677))

Included in the following conference series:

Abstract

Evaluating a conjunctive database query is known to be equivalent to solving a constraint satisfaction problem. These problems are NP-complete in general but become tractable, and actually highly parallelizable, if restricted to acyclic or nearly acyclic queries.

This paper surveys recent results by the authors on tractable classes of conjunctive queries and constraint satisfaction problems and presents a new decomposition algorithm for such problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Abiteboul, R. Hull, V. Vianu. Foundations of Databases, Addison-Wesley Publishing Company, 1995.

    Google Scholar 

  2. S. Arnborg, J. Lagergren, and D. Seese. Problems easy for tree-decomposable graphs. J. of Algorithms, 12:308–340, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the Desiderability of Acyclic Database Schemes. Journal of ACM, 30(3):479–513, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  4. P.A. Bernstein, and N. Goodman. The power of natural semijoins. SIAM J. Computing, 10(4):751–771, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  5. W. Bibel. Constraint Satisfaction from a Deductive Viewpoint. Artificial Intelligence, 35,401–413, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  6. H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  7. A.K. Chandra and P.M. Merlin. Optimal Implementation of Conjunctive Queries in relational Databases. In In ACM Symp. on Theory of Computing (STOC’77), pp.77–90, 1977.

    Google Scholar 

  8. Ch. Chekuri and A. Rajaraman. Conjunctive Query Containment Revisited. In Proc. International Conference on Database Theory 1997 (ICDT’97), Delphi, Greece, Jan. 1997, Springer LNCS, Vol. 1186, pp.56–70, 1997.

    Google Scholar 

  9. R. Dechter. Constraint Networks. In Encyclopedia of Artificial Intelligence, second edition, Wiley and Sons, pp. 276–285, 1992.

    Google Scholar 

  10. R. Dechter and J. Pearl. Network based heuristics for CSPs. AIJ, 34(1):1–38, 1988.

    MathSciNet  Google Scholar 

  11. R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelligence, pp. 353–366, 1989.

    Google Scholar 

  12. E.C. Freuder. A sufficient condition for backtrack-free search. JACM, 29(1):24–32, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  13. E.C. Freuder. A sufficient condition for backtrack bounded search. Journal of the ACM, 32(4):755–761, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  14. E.C. Freuder. Complexity of K-Tree Structured Constraint Satisfaction Problems. Proc. of AAAI’90, 1990.

    Google Scholar 

  15. M.R. Garey and D.S. Johnson. Computers and Intractability. A Guide to the Theory of NP-completeness. Freeman and Comp., NY, USA, 1979.

    Google Scholar 

  16. N. Goodman, and O. Shmueli. Tree queries: a simple class of relational queries. ACM Trans. on Database Systems, 7(4):653–677, 1982.

    Article  MATH  Google Scholar 

  17. G. Gottlob, N. Leone, and F. Scarcello. The Complexity of Acyclic Conjunctive Queries. Proc. of the IEEE Symposium on Foundations of Computer Science (FOCS’98), pp.706–715, Palo Alto, CA, 1998.

    Google Scholar 

  18. G. Gottlob, N. Leone, and F. Scarcello. Advanced Parallel Algorithms for Acyclic Conjunctive Queries. Technical Report DBAI-TR-98/18, available on the web as: http://www.dbai.tuwien.ac.at/staff/gottlob/parallel.ps, or by email from the authors.

  19. G. Gottlob, N. Leone, and F. Scarcello. Hypertree Decompositions and Tractable Queries. Technical Report DBAI-TR-98/21, available as Paper cs.DB/9812022 in The Computer Research Repository, http://xxx.lanl.gov/archive/cs

  20. G. Gottlob, N. Leone, and F. Scarcello. Hypertree Decompositions and Tractable Queries. In Proc. of Symp. on Principles of Database Systems (PODS’99), pp. 21–32, Philadelphia, May, 1999.

    Google Scholar 

  21. G. Gottlob, N. Leone, and F. Scarcello. A Comparison of Structural CSP Decomposition Methods. To appear in Proc. of the International Joint Conference on Artificial Intelligence (IJCAI’99), Stockholm, August, 1999.

    Google Scholar 

  22. M. Gyssens, P.G. Jeavons, and D.A. Cohen. Decomposing constraint satisfaction problems using database techniques. Artificial Intelligence, 66:57–89, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Gyssens, and J. Paredaens. A Decomposition Methodology for Cyclic Databases. In Advances in Database Theory, volume 2, pp. 85–122. Plenum Press New York, NY, 1984.

    Google Scholar 

  24. P. Jeavons, D. Cohen, and M. Gyssens. Closure Properties of Constraints. Journal of the ACM, 44(4):527–548.

    Google Scholar 

  25. Ph. G. Kolaitis andf M. Y. Vardi. Conjunctive-Query Containment and Constraint Satisfaction. In Proc. of Symp. on Principles of Database Systems (PODS’98), pp.205–213, Seattle, Washington, 1998.

    Google Scholar 

  26. D. Maier. The Theory of Relational Databases, Rochville, Md, Computer Science Press, 1986.

    Google Scholar 

  27. N. Robertson and P.D. Seymour. Graph Minors II. Algorithmic Aspects of Tree-Width. J. Algorithms, 7:309–322, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  28. R.E. Tarjan, and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Computing, 13(3):566–579, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  29. J.D. Ullman. Principles of Database and Knowledge Base Systems, Vol II, Computer Science Press, Rockville, MD, 1989.

    Google Scholar 

  30. M. Vardi. Complexity of Relational Query Languages. In Proc. of 14th ACM STOC, pp. 137–146, 1982.

    Google Scholar 

  31. A.N. Wilschut, J. Flokstra, and P.M.G. Apers. Parallel evaluation of multi-join queries. In Proc. of SIGMOD’95, San Jose, CA USA, pp.115–126, 1995.

    Google Scholar 

  32. M. Yannakakis. Algorithms for Acyclic Database Schemes. In Proc. of Int. Conf. on Very Large Data Bases (VLDB’81), pp. 82–94, C. Zaniolo and C. Delobel Eds., Cannes, France, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gottlob, G., Leone, N., Scarcello, F. (1999). On Tractable Queries and Constraints. In: Bench-Capon, T.J., Soda, G., Tjoa, A.M. (eds) Database and Expert Systems Applications. DEXA 1999. Lecture Notes in Computer Science, vol 1677. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48309-8_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-48309-8_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66448-2

  • Online ISBN: 978-3-540-48309-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics