Skip to main content

Scales in Natural Images and a Consequence on Their Bounded Variation Norm

  • Conference paper
  • First Online:
Scale-Space Theories in Computer Vision (Scale-Space 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1682))

Included in the following conference series:

Abstract

This paper introduces a new method for analyzing scaling phenomena in natural images, and draws some consequences as to whether natural images belong to the space of functions with bounded variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Alvarez, Y. Gousseau, and J.-M. Morel. The size of objects in natural and artificial images. Advances in Imaging and Electron Physics, 111,1999.

    Google Scholar 

  2. A. J. Bell and T. J. Sejnowski. The “independent components” of natural scenes are edge filters. Vision Research, 37:3327–3338, 1997.

    Article  Google Scholar 

  3. V. Caselles and J.-M. Morel. The connected components of sets of finite perimeters in the plane. Preprint, 1998.

    Google Scholar 

  4. A. Cohen, R. DeVore, P. Petrushev, and H. Xu. Non linear approximation and the space BV (IR2). Preprint, submitted to Amer. J. Math., 1998.

    Google Scholar 

  5. N. G. Deriugin. The power spectrum and the correlation function of the television signal. Telecomunications, 1:1–12, 1956.

    Google Scholar 

  6. L. C. Evans and R. F. Gariepy. Measure Theory and Fine Properties of Functions. Studies in Advanced Math. CRC Press, 1992.

    Google Scholar 

  7. D. J. Field. Relations between the statistics of natural images and the response properties of cortical cells. Jour. Opt. Soc. Amer., A4:2379–2394, 1987.

    Article  Google Scholar 

  8. E. De Giorgi. Su una teoria generale della misura (r-1)-dimensionale in uno spazio ad r dimensioni. Ann. Mat. Pura ed Appl., IV. Ser., 36:191–213, 1954.

    Article  MATH  Google Scholar 

  9. D. J. Heeger and J. R. Bergen. Pyramid based texture analysis/synthesis. Computer Graphics Proceedings, pages 229–238, 1995.

    Google Scholar 

  10. J. Huang and D. Mumford. Statistics of natural images and models. To be published, 1998.

    Google Scholar 

  11. T. Lindenberg. Detecting salient blob-like image structure and their scales with a scale-space primal sketch: A method for focus-of-attention. iInternational Journal of Computer Vision, 11(3):283–318, 1993.

    Article  Google Scholar 

  12. S. Mallat. Personal communication.

    Google Scholar 

  13. S Mallat. A Wavelet Tour of Signal Processing. Academic Press, 1997.

    Google Scholar 

  14. G. Matheron. Modèle séquentiel de partition aléatoire. Technical report, CMM, 1968.

    Google Scholar 

  15. Y. Meyer. Wavelets: Algorithms and Applications. SIAM, 1993.

    Google Scholar 

  16. D. Mumford, S. C. Zhu, and B. Gidas. Stochastic models for generic images. Working draft, 1997.

    Google Scholar 

  17. B. A. Olshausen and D. J. Field. Natural images statistics and efficient image coding. Network: Computation in Neural Systems, 7:333–339, 1996.

    Article  Google Scholar 

  18. A. P. Pentland. Fractal based description of natural scenes. IEEE Trans. on Pattern Analysis and Machine Intelligence, 6(6):661–674, November 1984.

    Google Scholar 

  19. D. L. Ruderman. Origins of scaling in natural images. Vision Research, 37(23):3385–3398, 1997.

    Article  Google Scholar 

  20. D. L. Ruderman and W. Bialek. Statistics of natural images: Scaling in the woods. Physical Review Letters, pages 814–817, 1994.

    Google Scholar 

  21. L. Rudin. Images, Numerical Analysis of Singularities and Shock Filters. PhD thesis, California Institute of Technology, 1987.

    Google Scholar 

  22. L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 60:259–268, 1992.

    Article  MATH  Google Scholar 

  23. E. P. Simoncelli and J. Portilla. Texture characterisation via joint statistics of wavelet coeficient magnitudes. In 5th International Conference on Image Processing, 1998.

    Google Scholar 

  24. S. W. Zhu, Y. Wu, and D. Mumford. Filters, random fields and maximum entropy (FRAME). Int’l Journal of Computer Vision, 27:1–20, 1998.

    Google Scholar 

  25. W. P. Ziemer. Weakly Differentiable Functions. Springer Verlag, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alvarez, L., Gousseau, Y., Morel, JM. (1999). Scales in Natural Images and a Consequence on Their Bounded Variation Norm. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds) Scale-Space Theories in Computer Vision. Scale-Space 1999. Lecture Notes in Computer Science, vol 1682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48236-9_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-48236-9_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66498-7

  • Online ISBN: 978-3-540-48236-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics