Skip to main content

Hard Equality Constrained Integer Knapsacks

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2337))

Abstract

We consider the following integer feasibility problem: “Given positive integer numbers a 0, a 1,..., a n, with gcd(a 1,..., a n) = 1 and a = (a 1,..., a n), does there exist a nonnegative integer vector x satisfying ax = a 0?” Some instances of this type have been found to be extremely hard to solve by standard methods such as branch-and-bound, even if the number of variables is as small as ten. We observe that not only the sizes of the numbers a 0, a 1,..., a n, but also their structure, have a large impact on the difficulty of the instances. Moreover, we demonstrate that the characteristics that make the instances so difficult to solve by branch-and-bound make the solution of a certain reformulation of the problem almost trivial. We accompany our results by a small computational study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aardal K., Bixby R.E., Hurkens C.A.J., Lenstra A.K., Smeltink J.W. (1999) Market Split and Basis Reduction: Towards a Solution of the Cornuéjols-Dawande Instances. In: Cornuéjols G., Burkard R.E., Woeginger G.J. (eds.) Integer Programming and Combinatorial Optimization, 7th International IPCO Conference. Lecture Notes in Computer Science 1610. Springer-Verlag, Berlin, Heidelberg, 1–16

    Chapter  Google Scholar 

  2. Aardal K., Hurkens, C.A.J., Lenstra A.K. (2000) Solving a system of diophantine equations with lower and upper bounds on the variables. Mathematics of Operations Research 25:427–442

    Article  MathSciNet  MATH  Google Scholar 

  3. Brauer A. (1942) On a problem of partitions. American Journal of Mathematics 64:299–312

    Article  MathSciNet  MATH  Google Scholar 

  4. Brauer A., Shockley J.E. (1962) On a problem of Frobenius. Journal für reine und angewandte Mathematik 211:399–408

    MathSciNet  Google Scholar 

  5. Cook W., Rutherford T., Scarf H. E., Shallcross D. (1993) An implementation of the generalized basis reduction algorithm for integer programming. ORSA Journal on Computing 5:206–212

    Article  MathSciNet  MATH  Google Scholar 

  6. Cornuéjols G., Dawande M. (1998) A class of hard small 0-1 programs. In: Bixby R.E., Boyd E.A., Ríos-Mercado R.Z. (eds.) Integer Programming and Combinatorial Optimization, 6th International IPCO Conference. Lecture Notes in Computer Science 1412. Springer-Verlag, Berlin Heidelberg, 284–293

    Chapter  Google Scholar 

  7. Cornuéjols G., Urbaniak R., Weismantel R., Wolsey L.A. (1997) Decomposition of integer programs and of generating sets. In: Burkard R.E., Woeginger G.J. (eds.) Algorithms-ESA’ 97. Lecture Notes in Computer Science 1284. Springer-Verlag, Berlin, Heidelberg, 92–103

    Chapter  Google Scholar 

  8. Erdős P., Graham R.L. (1972) On a linear diophantine problem of Frobenius. Acta Arithmetica 21:399–408

    MathSciNet  Google Scholar 

  9. Greenberg H. (1988) Solution to a linear Diophantine equation for nonnegative integers. Journal of Algorithms 9:343–353

    Article  MathSciNet  MATH  Google Scholar 

  10. Hungerford T.W. (1996) Algebra; corrected eighth printing. Springer-Verlag, New York

    Google Scholar 

  11. Kannan R. (1991) Lattice translates of a polytope and the Frobenius Problem. Combinatorica 12:161–177

    Article  Google Scholar 

  12. Khinchine A. (1948) A quantitative formulation of Kronecker’s theory of approximation (In Russian). Izvestiya Akademii Nauk SSR Seriya Matematika 12:113–122

    Google Scholar 

  13. Lenstra A.K., Lenstra H.W., Jr., Lovász L. (1982) Factoring polynomials with rational coefficients. Mathematische Annalen 261:515–534

    Article  MathSciNet  MATH  Google Scholar 

  14. Lenstra H.W., Jr., (1983) Integer programming with a fixed number of variables. Mathematics of Operations Research 8:538–548

    Article  MathSciNet  MATH  Google Scholar 

  15. Lovász L., Scarf H.E. (1992) The generalized basis reduction algorithm, Mathematics of Operations Research 17:751–764

    Article  MathSciNet  MATH  Google Scholar 

  16. Louveaux Q., Wolsey L.A. (2000) Combining problem structure with basis reduction to solve a class of hard integer programs. CORE Discussion Paper 2000/51, CORE, Université Catholique de Louvain, 6 Louvain-la-Neuve, Belgium (to appear in Mathematics of Operations research)

    Google Scholar 

  17. Rödseth Ö.J. (1978) On a linear diophantine problem of Frobenius. Journal für reine und angewandte Mathematik 301:171–178

    MATH  Google Scholar 

  18. Schrijver A. (1986) Theory of linear and integer programming, Wiley, Chichester

    MATH  Google Scholar 

  19. Selmer E.S. (1977) On the linear diophantine problem of Frobenius. Journal für reine und angewandte Mathematik 93/294:1–17

    MathSciNet  Google Scholar 

  20. Selmer E.S., Beyer Ö. (1978) On the linear diophantine problem of Frobenius in three variables. Journal für reine und angewandte Mathematik 301:161–170

    MathSciNet  MATH  Google Scholar 

  21. Sylvester J.J., Curran Sharp W.J. (1884). [Problem] 7382. Mathematics from the Educational Times, with Additional Papers and Solutions 41:21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aardal, K., Lenstra, A.K. (2002). Hard Equality Constrained Integer Knapsacks. In: Cook, W.J., Schulz, A.S. (eds) Integer Programming and Combinatorial Optimization. IPCO 2002. Lecture Notes in Computer Science, vol 2337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47867-1_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-47867-1_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43676-8

  • Online ISBN: 978-3-540-47867-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics