Skip to main content

On the complexity of the union of geometric objects

  • Conference paper
  • First Online:
Discrete and Computational Geometry (JCDCG 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2098))

Included in the following conference series:

Abstract

Giben a family C of regions bounded by simple closed curves in the plane, the complexity of their union is defined as the number of points along the boundary ∪C, which belong to more than one curve. Similarly, one can define the complexity of the union of 3-dimensional bodies, as the number of points on the boundary of the union, belonging to the surfaces of at least three distinct members of the family. We survey some upper bounds on the complexity of the union of n geometric objects satisfying various natural conditions. These problems play a central role in the design and analysis of many geometric algorithms arising in motion planning and computer graphics.

Supported by the National Science Foundation (USA) and the National Fund for Scientific Research (Hungary).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Agarwal, M. Katz, and M. Sharir: Computing depth order and related problems, Comput. Geom. Theory Appl. 5 (1995), 187–206.

    MATH  MathSciNet  Google Scholar 

  2. P. Agarwal and M. Sharir: Pipes, cigars, and kreplach: The union of Minkowski sums in three dimensions, Discrete Comput. Geom. 24 (2000), 645–685.

    MATH  MathSciNet  Google Scholar 

  3. B. Aronov, A. Efrat, D. Halperin, and M. Sharir: On the number of regular vertices of the union of Jordan regions, in: Algorithm Theory, SWAT’98 (Stockholm), Lecture Notes in Comput. Sci. 1432, Springer-Verlag, Berlin, 1998, 322–334.

    Chapter  Google Scholar 

  4. B. Aronov and M. Sharir: On translational motion planning of a convex polyhedron in 3-space, SIAM J. Comput. 26 (1997), 1785–1803.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Atallah: Some dynamic computational geometry problems, Computers and Mathematics with Applications 11 (1985), 1171–1181.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. de Berg, M. Katz, F. van der Stappen, and J. Vleugels: Realistic input models for geometric algorithms, in: Proc. 13th Annual Symposium on Computational Geometry, ACM Press, 1997, 294–303.

    Google Scholar 

  7. J. L. Bentley and T. A. Ottmann: Algorithms for reporting and counting geometric intersections, IEEE Trans. Comput. C-28 (1979), 643–647.

    Article  Google Scholar 

  8. J.-D. Boissonnat, M. Sharirs, B. Tagansky, and M. Yvines: Voronoi diagrams in higher dimensions under certain polyhedral distance functions, Discrete Comput. Geom. 19 (1998), 485–519.

    Article  MATH  MathSciNet  Google Scholar 

  9. Ch. Chojnacki (A. Hanani): Über wesentlich unplättbare Kurven im dreidimensionalen Raume, Fund. Math. 23 (1934), 135–142.

    MATH  Google Scholar 

  10. K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir, E. Welzl: Combinational complexity bounds for arrangements of curves and surfaces, Discrete and Computational Geometry 5 (1990), 99–160.

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Edelsbrunner, L. Guibas, J. Hershberger, J. Pach, R. Pollack, R. Seidel, M. Sharir, and J. Snoeyink: On arrangements of Jordan arcs with three intersections per pair, Discrete Comput. Geom. 4 (1989), 523–539.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Efrat: The complexity of the union of (α β)-covered objects, Proceedings of the 15th Annual Symposium on Computational Geometry, ACM Press, 1999, 134–142.

    Google Scholar 

  13. A. Efrat and M. J. Katz: On the union of k-curved objects. Comput. Geom. Theory Appl. 14 (1999), 241–254.

    MATH  MathSciNet  Google Scholar 

  14. A. Efrat, G. Rote, and M. Sharir: On the union of fat wedges and separating a collection of segments by a line, Comput. Geom. Theory Appl. 3 (1993), 277–288.

    MATH  MathSciNet  Google Scholar 

  15. A. Efrat and M. Sharir: On the complexity of the union of fat convex objects in the plane, Discrete Comput. Geom. 23 (2000), 171–189.

    Article  MATH  MathSciNet  Google Scholar 

  16. P. Erdös: On extremal problems of graphs and hypergraphs, Israel J. Math. 2 (1964), 183–190.

    Article  MATH  MathSciNet  Google Scholar 

  17. L. Guibas and M. Sharir: Combinatorics and algorithms of arrangements, in: New Trends in Discrete and Computational Geometry (J. Pach, ed.), Springer-Verlag, Berlin, 1993, 9–36.

    Google Scholar 

  18. P. Gupta, R. Janardan, and M. Smid: A technique for adding range restrictions to generalized searching problems, Inform. Process. Lett. 64 (1997), 263–269.

    Article  MathSciNet  Google Scholar 

  19. D. Halperin and M. Sharir: New bounds for lower envelopes in three dimensions, with applications to visibility in terrains, Discrete Comput. Geom. 12 (1994), 313–326.

    Article  MATH  MathSciNet  Google Scholar 

  20. S. Hart and M. Sharir: Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes, Combinatorica 6 (1986), 151–177.

    Article  MATH  MathSciNet  Google Scholar 

  21. G. O. H. Katona: On a problem of L. Fejes Toth, Studia Sci. Math. Hungar. 12 (1977), 77–80.

    MATH  MathSciNet  Google Scholar 

  22. M. J. Katz: 3-D vertical ray shooting and 2-D point enclosure, range searching, and arc shooting amidst convex fat objects, Comput. Geom. Theory Appl. 8 (1997), 299–316.

    MATH  Google Scholar 

  23. M. D. Kovalev: A property of convex sets and its application (Russian), Mat. Zametki 44 (1988), 89–99. English translation: Math. Notes 44 (1988), 537—543.

    MATH  MathSciNet  Google Scholar 

  24. K. Kedem, R. Livne, J. Pach and M. Sharir: On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles, Discrete Comput. Geom. 1 (1986), 59–71.

    Article  MATH  MathSciNet  Google Scholar 

  25. K. Kedem and M. Sharir: An efficient motion-planning algorithm for a convex polygonal object in two-dimensional polygonal space, Discrete Comput. Geom. 5 (1990), 43–75.

    Article  MATH  MathSciNet  Google Scholar 

  26. M. van Kreveld: On fat partitioning, fat covering and the union size of polygons, Computational Geometry: Theory and Applications 9 (1998), 197–210.

    MATH  MathSciNet  Google Scholar 

  27. D. Leven and M. Sharir: Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams, Discrete Comput. Geom. 2 (1987), 9–31.

    Article  MATH  MathSciNet  Google Scholar 

  28. L. Lovász, J. Pach, and M. Szegedy: On Conway’s thrackle conjecture, Discrete Comput. Geom. 18 (1997), 369–376.

    Article  MATH  MathSciNet  Google Scholar 

  29. T. Lozano-Pérez and M. A. Wesley: An algorithm for planning collision-free paths among polyhedral obstacles, Commun. ACM 22 (1979), 560–570.

    Article  Google Scholar 

  30. J. Matoušsek, J. Pach, M. Sharir, S. Sifrony, and E. Welzl: Fat triangles determine linearly many holes, SIAM Journal of Computing 23 (1994), 154–169.

    Article  MathSciNet  Google Scholar 

  31. P. McMullen: On the upper-bound conjecture for convex polytopes, J. Combinatorial Theory, Ser. B 10 (1971), 187–200.

    Article  MATH  MathSciNet  Google Scholar 

  32. J. Pach and P.K. Agarwal: Combinatorial Geometry, J. Wiley and Sons, New York, 1995.

    MATH  Google Scholar 

  33. J. Pach, I. Safruti, and M. Sharir, The union of congruent cubes in three dimensions, 17th ACM Symposium on Computational Geometry, 2001, accepted.

    Google Scholar 

  34. J. Pach and M. Sharir: The upper envelope of piecewise linear functions and the boundary of a region enclosed by convex plates: combinatorial analysis, Discrete Comput. Geom. 4 (1989), 291–309.

    Article  MATH  MathSciNet  Google Scholar 

  35. J. Pach and M. Sharir: On the boundary of the union of planar convex sets, Discrete Comput. Geom. 21 (1999), 321–328.

    Article  MATH  MathSciNet  Google Scholar 

  36. J. Pach and G. Tardos: On the boundary complexity of the union of fat triangles, Proceedings of 41st Annual Symposium on Foundations of Computer Science, Los Angeles, 2000.

    Google Scholar 

  37. F. van der Stappen: Motion Planning amidst Fat Obstacles (Ph. D. Thesis, Faculteit Wiskunde & Informatica, Universiteit Utrecht), 1994.

    Google Scholar 

  38. F. van der Stappen, D. Halperin, and M. Overmars: The complexity of the free space for a robot moving amidst fat obstacles, Computational Geometry: Theory and Applications 3 (1993), 353–373.

    MATH  MathSciNet  Google Scholar 

  39. J. T. Schwartz and M. Sharir: On the “piano movers” problem I,II, Comm. Pure Applied Math. 36 (1983), 345–398 and Adv. Applied Math. 4 (1983), 298—351.

    Article  MATH  MathSciNet  Google Scholar 

  40. J. T. Schwartz and M. Sharir: A survey of motion planning and related geometric algorithms, in: Geometric Reasoning (D. Kapur and J. Mundy, eds.), MIT Press, Cambridge, MA, 1989, 157–169.

    Google Scholar 

  41. J. T. Schwartz and M. Sharir: Algorithmic motion planning in robotics, in: Handbook of Theoretical Computer Science (J. van Leeuwen, ed.), Elsevier, Amsterdam, 1990, 391–430.

    Google Scholar 

  42. M. Sharir: Almost tight upper bounds for lower envelopes in higher dimensions, Discrete Comput. Geom. 12 (1994), 327–345.

    Article  MATH  MathSciNet  Google Scholar 

  43. M. Sharir and P.K. Agarwel: Davenport-Schinzel Sequences and Their Geometric Applications, Cambridge University Press, Cambridge, 1995.

    MATH  Google Scholar 

  44. W. T. Tutte: Toward a theory of crossing numbers, Journal of Combinatorial Theory 8 (1970), 45–53.

    Article  MATH  MathSciNet  Google Scholar 

  45. S. Whitesides and R. Zhao: K-admissible collections of Jordan curves and offsets of circular arc figures, Technical Report SOCS 90.08, McGill University, Montreal, 1990.

    Google Scholar 

  46. A. Wiernik and M. Sharir: Planar realizations of nonlinear Davenport-Schinzel sequences by segment, Discrete Comput. Geom. 3 (1988, 15–47.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pach, J. (2001). On the complexity of the union of geometric objects. In: Akiyama, J., Kano, M., Urabe, M. (eds) Discrete and Computational Geometry. JCDCG 2000. Lecture Notes in Computer Science, vol 2098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47738-1_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-47738-1_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42306-5

  • Online ISBN: 978-3-540-47738-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics