Skip to main content

Classifying Semi-Normal Default Logic on the Basis of its Expressive Power

  • Conference paper
  • First Online:
Logic Programming and Nonmonotonic Reasoning (LPNMR 1999)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1730))

Abstract

This paper reports on systematic research which aims to classify non-monotonic logics by their expressive power. The classification is based on translation functions that satisfy three important criteria: polynomiality, faithfulness and modularity (PFM for short). The basic method for classification is to prove that PFM translation functions exist (or do not exist) between certain logics. As a result, non-monotonic logics can be arranged to form a hierarchy. This paper gives an overview of the current expressive power hierarchy (EPH) and investigates semi-normal default logic as well as prerequisite-free and semi-normal default logic in order to locate their exact positions in the hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Apt, H. Blair, and A. Walker. Towards a Theory of Declarative Knowledge. In J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pp. 89–148. Morgan Kaufman, Washington DC, 1988.

    Google Scholar 

  2. W. Bibel. Constraint Satisfaction from a DeductiveViewpoint. Artificial Intelligence, 35,401–413, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  3. H. L. Bodlaender.A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  4. A.K. Chandra and P.M. Merlin. Optimal Implementation of Conjunctive Queries in relational Databases. In ACM Symp. on Theory of Computing (STOC’77), pp.77–90, 1977.

    Google Scholar 

  5. R.G. Downey and M.R. Fellows. Fixed ParameterTractability and Completeness. Congressus Numerantium, 87:161–187, 1992.

    MathSciNet  Google Scholar 

  6. R.G. Downey and M.R. Fellows. Fixed Parameter Intractability (Extended Abstract). In Proc. of Structure in Complexity Theory, IEEE, pp.36–50, 1992.

    Google Scholar 

  7. R.G. Downey and M.R. Fellows. Fixed Parameter Tractability and Completeness I: Basic Results. SIAM J. Comput., 24:873–921, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  8. R.G. Downey and M.R. Fellows. On the Parametric Complexity of Relational Database Queries and a Sharper Characterization of W[1]. In Combinatorics Complexity and Logics, Proceedings of DMTCS’96, pp.164–213, Springer, 1996.

    Google Scholar 

  9. R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer, NewYork, 1999.

    Google Scholar 

  10. T. Eiter and G. Gottlob. Propositional Circumscription and Extended ClosedWorld Reasoning are IIstackP stack2-complete. Theoretical Computer Science, 114(2):231–245, 1993. Addendum 118:315.

    Article  MATH  MathSciNet  Google Scholar 

  11. T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM Trans. on Database Syst., 22(3):364–418, September 1997.

    Article  Google Scholar 

  12. S. Fortune, J.E. Hopcroft, and J. Wyllie. The Directed Subgraph Homeomorphism Problem. Theoretical Computer Science, 10(2): 111–121, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  13. M.R. Garey and D.S. Johnson. Computers and Intractability. A Guide to the Theory of NPcompleteness. Freeman and Comp., NY, USA, 1979.

    Google Scholar 

  14. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In Logic Programming: Proc. Fifth Intl Conference and Symposium, pp. 1070–1080, Cambridge, Mass., 1988. MIT Press.

    Google Scholar 

  15. G. Gottlob, N. Leone, and F. Scarcello. The Complexity of Acyclic Conjunctive Queries. Technical Report DBAI-TR-98/17, available on the web as: http://www.dbai.tuwien.ac.at/staff/gottlob/acyclic.ps, or by email from the authors. An extended abstract concerning part of this work has been published in Proc. of the IEEE Symposium on Foundations of Computer Science (FOCS’98), pp.706–715, Palo Alto, CA, 1998.

  16. G. Gottlob, N. Leone, and F. Scarcello.AComparison of Structural CSP Decomposition Methods. In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, pp. 394–399, Stockholm, 1999.

    Google Scholar 

  17. P. Jeavons, D. Cohen, and M. Gyssens. Closure Properties of Constraints. JACM, 44(4), 1997.

    Google Scholar 

  18. Ph. G. Kolaitis and M.Y. Vardi. Conjunctive-Query Containment and Constraint Satisfaction. Proc. of Symp. on Principles of Database Systems (PODS’98), 1998.

    Google Scholar 

  19. C.H. Papadimitriou and M. Yannakakis. On the Complexity of Database Queries. In Proc. of Symp. on Principles of Database Systems (PODS’97), pp.12–19, Tucson, Arizona, 1997.

    Google Scholar 

  20. N. Robertson and P.D. Seymour. Graph Minors II. Algorithmic Aspects of Tree-Width. J. Algorithms, 7:309–322, 1986.

    MATH  MathSciNet  Google Scholar 

  21. N. Robertson and P.D. Seymour. Graph Minors XX.Wagner’s Conjecture. To appear.

    Google Scholar 

  22. M. Truszczyński. Computing Large and Small Stable Models. In Proc. of the 16th International Conference on Logic Programming (ICLP’99), Las Cruces, New Mexico. To appear.

    Google Scholar 

  23. M. Vardi. Complexity of Relational Query Languages. In Proceedings 14th STOC, pages 137–146, San Francisco, 1982.

    Google Scholar 

  24. M. Yannakakis. Algorithms for Acyclic Database Schemes. In Proc. of Int. Conf. on Very Large Data Bases (VLDB’81), pp. 82–94, C. Zaniolo and C. Delobel Eds., Cannes, France, 1981.

    Google Scholar 

References

  1. P.A. Bonatti and T. Eiter. Querying disjunctive database through nonmonotonic logics. Theoretical Computer Science, 160:321–363, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  2. D.W. Etherington. Formalizing nonmonotonic reasoning systems. Artificial Intelligence, 31:41–85, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  3. D.W. Etherington. Relating default logic and circumscription. In Proceedings of IJCAI’87, pages 489–494, Milan, Italy, August 1987. Morgan Kaufmann.

    Google Scholar 

  4. D.W. Etherington. Reasoning with Incomplete Information. Pitman, London, 1988.

    Google Scholar 

  5. G. Gottlob. Translating default logic into standard autoepistemic logic. Journal of the Association for Computing Machinery, 42(2):711–740, 1995.

    MathSciNet  Google Scholar 

  6. T. Imielinski. Results on translating defaults to circumscription. Artificial Intelligence, 32:131–146, 1987.

    Article  MathSciNet  Google Scholar 

  7. T. Janhunen. Representing autoepistemic introspection in terms of default rules. In Proceedings of ECAI’96, pages 70–74, Budapest, Hungary, 1996. John Wiley.

    Google Scholar 

  8. T. Janhunen. Separating disbeliefs from beliefs in autoepistemic reasoning. In J. Dix, U. Furbach, and A. Nerode, editors, Proceedings of LPNMR’97, pages 132–151, Dagstuhl, Germany, July 1997. Springer-Verlag. LNAI 1265.

    Google Scholar 

  9. T. Janhunen. On the intertranslatability of autoepistemic, default and priority logics, and parallel circumscription. In Proceedings of JELIA’98, pages 216–232, Dagstuhl, Germany, October 1998. Springer-Verlag. LNAI 1489.

    Google Scholar 

  10. T. Janhunen. On the intertranslatability of non-monotonic logics. Annals of Mathematics and Artificial Intelligence (issue on JELIA’98). Accepted for Publication.

    Google Scholar 

  11. K. Konolige. On the relation between default and autoepistemic logic. Artificial Intelligence, 35:343382, 1988.

    Google Scholar 

  12. K. Konolige. On the relation between autoepistemic logic and circumscription. In Proceedings of IJCAI’89, pages 1213–1218, Detroit, Michigan, USA, August 1989

    Google Scholar 

  13. V. Lifschitz. Computing circumscription. In Proceedings of IJCAI’85, pages 121–127, Los Angeles, California, USA, August 1985. Morgan Kaufmann.

    Google Scholar 

  14. W. Lukaszewicz. Two results on default logic. In Proceedings of IJCAI’85, pages 459–461, Los Angeles, California, August 1985.

    Google Scholar 

  15. W. Marek, G.F. Schwarz, and M. Truszczyński. Modal nonmonotonic logics: Ranges, characterization, computation. Journal of the ACM, 40(4):963–990, 1993.

    Article  MATH  Google Scholar 

  16. W. Marek and M. Truszczyński. Modal logic for default reasoning. Annals of Mathematics and Artificial Intelligence, 1:275–302, 1990.

    Article  MATH  Google Scholar 

  17. W. Marek and M. Truszczyński. Nonmonotonic Logic: Context-Dependent Reasoning. Springer-Verlag, Berlin, 1993.

    MATH  Google Scholar 

  18. J. McCarthy. Circumscription — a form of non-monotonic reasoning. Artificial Intelligence, 13:27–39, 1980.

    Article  MathSciNet  Google Scholar 

  19. R.C. Moore. Semantical considerations on nonmonotonic logic. In Proceedings of IJCAI’83, pages 272–279, Karlsruhe, FRG, August 1983. Morgan Kaufmann.

    Google Scholar 

  20. I. Niemelä. A unifying framework for nonmonotonic reasoning. In Proceedings of ECAI’92, pages 334–338, Vienna, Austria, August 1992. John Wiley.

    Google Scholar 

  21. R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  22. G. Schwarz. On embedding default logic into Moore’s autoepistemic logic. Artificial Intelligence, 80:349–359, 1996.

    Article  MathSciNet  Google Scholar 

  23. M. Truszczyński. Modal interpretations of default logic. In Proceedings of IJCAI’91, pages 393–398, Sydney, Australia, August 1991. Morgan Kaufmann.

    Google Scholar 

  24. X. Wang, J.-H. You, and L.Y. Yuan. Nonmonotonic reasoning by monotonic inferences with priority constraints. In Proceedings of the 2nd International Workshop on Non-Monotonic Extensions of LP, pages 91–109. Springer, 1996. LNAI 1216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Janhunen, T. (1999). Classifying Semi-Normal Default Logic on the Basis of its Expressive Power. In: Gelfond, M., Leone, N., Pfeifer, G. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 1999. Lecture Notes in Computer Science(), vol 1730. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46767-X_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-46767-X_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66749-0

  • Online ISBN: 978-3-540-46767-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics