Skip to main content

Asymptotically Disjoint Quantum States

  • Conference paper
  • First Online:
Decoherence: Theoretical, Experimental, and Conceptual Problems

Part of the book series: Lecture Notes in Physics ((LNP,volume 538))

Abstract

A clarification of the heuristic concept of decoherence requires a consistent description of the classical behavior of some quantum systems. We adopt algebraic quantum mechanics since it includes not only classical physics, but also permits a judicious concept of a classical mixture and explains the possibility of the emergence of a classical behavior of quantum systems. A nonpure quantum state can be interpreted as a classical mixture if and only if its components are disjoint. Here, two pure quantum states are called disjoint if there exists an element of the center of the algebra of observables such that its expectation values with respect to these states are different. An appropriate automorphic dynamics can transform a factor state into a classical mixture of asymptotically disjoint final states. Such asymptotically disjoint quantum states lead to regular decision problems while exactly disjoint states evoke singular problems which engineers reject as improperly posed.

Compare for example BOHR (1949), p.209.

For example, Bohr argued that the description of a meauring instrument cannot be included in the realm of quantum mechanics. Most clearly Bohr stated his view in a letter of October 26, 1935 to Schrödinger: “Das Argument its ja dabei vor allem, dass die Messinstrumente, wenn sie als solche dienen sollen, nicht in den eigentlichen Anwendungsbereich der Quantenmechanik einbezogen werden konnen.” Quoted on p.510 in Kalckar (1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bell, J. S. (1975): On wave packet reduction in the Coleman-Hepp model. Helvetica Physica Acta 48, 93–98.

    MATH  Google Scholar 

  • Bhattacharyya, A. (1943): On a measure of divergence between two statistical populations defined by their probability distributions. Bulletin of the Calcutta Mathematical Society 35, 99–109.

    MATH  MathSciNet  Google Scholar 

  • Bohr, N. (1949): Discussion with Einstein on epistemological problems in atomic physics. In: P. A. Schilpp (ed.): Albert Einstein: Philosopher-Scientist. Evanston, Illinois: Library of Living Philosophers. Pp.199–241.

    Google Scholar 

  • Cushen, C. D. & R. L. Hudson (1971): A quantum-mechanical central limit theorem. Journal of Applied Probability 8, 454–469.

    Article  MATH  MathSciNet  Google Scholar 

  • Eddington, A. S. (1946): Fundamental Theory. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Hahn, H. (1912): Über die Integrate des Herrn Hellinger und die Or-thogonalinvarianten der quandratischen Formen von unendlich vielen Veränderlichen. Monatshefte für Mathematik und Physik 23, 161–224.

    Article  MATH  Google Scholar 

  • Hegerfeldt, G. C. & O. Melsheimer (1969): The form of representations of the canonical commutation relations for Base fields and connection with finitely many degrees of freedom. Communications in Mathematical Physics 12, 304–323.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Hellinger, E. (1909): Neue Begründung der Theorie quadratischer Formen von unendlich vielen Veränderlichen. Journal für die reine and angewandte Mathematik 36, 210–271.

    Article  Google Scholar 

  • Hepp, K. (1972): Quantum theory of measurement and macroscopic ob-servables. Helvetica Physica Acta 45, 237–248.

    Google Scholar 

  • Hida, T. (1980): Brownian Motion. New York: Springer.

    MATH  Google Scholar 

  • Husimi, K. (1940): Some formal properties of the density matrix. Proceedings of the Physico Mathematical Society of Japan 22, 264–314.

    MATH  Google Scholar 

  • Kakutani, S. (1948): On equivalence of infinite product measures. Annals of Mathematics 49, 214–224.

    Article  MathSciNet  Google Scholar 

  • Kalckar, J. (1996): Niels Bohr. Collected Works. Volume 7. Foundations of Quantum Physics II (1933-1958). Amsterdam: Elsevier.

    Google Scholar 

  • Kraft, C. (1955): Some conditions for consistency and uniform consistency of statistical procedures. In: Neyman, J., LeCam, L. M. & Scheffe, H. (eds.): University of California Publications in Statistics. Volume 2. No.6. pp.125–141.

    Google Scholar 

  • Landsman, N. P. (1995): Observation and superselection in quantum mechanics. Studies in History and Philosophy of Modern Physics 26, 45–73.

    Article  MathSciNet  Google Scholar 

  • Leggett, A. J., S. Chakravarty, A. T. Dorseyet, M. P. A. Fisher, A. Garg & W. Zwerger (1987): Dynamics of the dissipative two-state system. Reviews of Modern Physics 59, 1–85.

    Article  ADS  Google Scholar 

  • Lighthill, M. J. (1958): Introduction to Fourier Analysis and Generalized Functions. Cambridge: Cambridge University Press.

    Google Scholar 

  • Loomis, L. H. (1952): Note on a theorem by Mackey. Duke Mathematical Journal 19, 641–645.

    Article  MATH  MathSciNet  Google Scholar 

  • Mackey, G. W. (1949): A theorem of Stone and von Neumann. Duke Mathematical Journal 16, 313–326.

    Article  MATH  MathSciNet  Google Scholar 

  • Mackey, G. W. (1963): The Mathematical Foundations of Quantum Mechanics. New York: Benjamin.

    MATH  Google Scholar 

  • Mandelbrot, B. (1967): Some noises with 1/f spectrum, a bridge between direct current and white noise. IEEE Transactions on Information Theory IT-13, 289–298.

    Article  Google Scholar 

  • Mandelbrot, B. B. & J. W. v. Ness (1968): Fractional Brownian motions, fractional noises and applications. SIAM Review 10, 422–437.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Matusita, K. (1951): On the theory of statistical decision functions. Annals of the Institute of Statistical Mathematics 3, 17–35.

    Article  MATH  MathSciNet  Google Scholar 

  • McKenna, J. & R. Klauder (1964): Continuous-representation theory. IV Structure of a class of function spaces arising from quantum mechanics. Journal of Mathematical Physics 5, 878–896.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Mehta, C. L. & E. C. G. Sudarshan (1965): Relation between quantum and semiclassical description of optical coherence. Physical Review 138, B274–B280.

    Article  ADS  MathSciNet  Google Scholar 

  • Middleton, D. (1960): Statistical Communication Theory. New York: MacGraw-Hill.

    Google Scholar 

  • Minlos, R. A. (1959): Genereralized random processes and their extension to a measure. (In Russian). Trudy Moskovskogo Matematiceskogo Obscestva 9, 3127–518. English translation: Selected Translations in Mathematical Statistics and Probability 3, 291-313 (1963).

    MathSciNet  Google Scholar 

  • Neumann, J. v. (1931): Die Eindeutigkeit der Schrödingerschen Opera-toren. Mathematische Annalen 104, 570–578.

    Article  MATH  MathSciNet  Google Scholar 

  • Neumann, J. v. (1932): Mathematische Grundlagen der Quantenmechanik. Berlin: Springer.

    MATH  Google Scholar 

  • Root, W. L. (1963): Singular Gaussian measures in detection theory. In: M. Rosenblatt (ed.): Proceedings of the Symposium on Time Series Analysis. New York: Wiley. Pp.292–315.

    Google Scholar 

  • Root, W. L. (1964): Stability in signal detection problems. In: R. Bellman (ed.): Stochastic Processes in Mathematical Physics and Engineering. Providence, Rhode Island: American Mathematical Society. Pp.247–263.

    Google Scholar 

  • Root, W. L. (1968): The detection of signals in Gaussian noise. In: A. V. Balakrishnan (ed.): Communication Theory. New York: McGraw-Hill. Pp.160–191.

    Google Scholar 

  • Rényi, A. (1966): On the amount of missing information and the Neyman-Pearson lemma. In: F. N. David (ed.): Research Papers in Statistics. Festschrift for J. Neyman. London: Wiley. Pp.281–288.

    Google Scholar 

  • Rényi, A. (1967): Statistics and information theory. Studia Scientiarum Mathematicarum Hungarica 2, 249–256.

    MATH  MathSciNet  Google Scholar 

  • Slepian, D. (1958): Some comments on the detection of Gaussian signals in Gaussian noise. IRE Transactions on Information Theory 4, 56–68.

    Article  MathSciNet  Google Scholar 

  • Stone, M. H. (1930): Linear transformations in Hilbert space. III. Operational methods and group theory. Proceedings of the National Academy of Sciences of the United States of America 16, 172–175.

    MATH  Google Scholar 

  • Takesaki, M. (1979): Theory of Operator Algebras I. New York: Springer.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Primas, H. (2000). Asymptotically Disjoint Quantum States. In: Blanchard, P., Joos, E., Giulini, D., Kiefer, C., Stamatescu, IO. (eds) Decoherence: Theoretical, Experimental, and Conceptual Problems. Lecture Notes in Physics, vol 538. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46657-6_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-46657-6_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66899-2

  • Online ISBN: 978-3-540-46657-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics