Skip to main content

A Full-Potential LMTO Method Based on Smooth Hankel Functions

  • Conference paper
  • First Online:
Electronic Structure and Physical Properies of Solids

Part of the book series: Lecture Notes in Physics ((LNP,volume 535))

Abstract

The paper presents a recently developed full-potential linear muffin-tin orbital (FP-LMTO) method which does not require empty spheres and can calculate the forces accurately. Similar to previous approaches, this method uses numerical integration to calculate the matrix elements for the interstitial potential, which is the limiting step for any FP-LMTO approach. However, in order to reduce the numerical e.ort as far as possible, we use a newly introduced basis consisting of “augmented smooth Hankel functions” which play the role of the LMTO envelope functions. After presenting the basics of the approach, we report the results of numerical test for typical condensed-matter systems. The calculations show that good accuracy can be reached with an almost minimal basis set. These features of the method open the way to efficient molecular dynamics studies and simulated-annealing calculations to optimize structures while retaining the advantages of the LMTO method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O.K. Andersen, Phys. Rev. B 12, 3060 (1975).

    Article  ADS  Google Scholar 

  2. P. Hohenberg and W. Kohn, Phys. Rev. 136, B6864 (1964); W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965); R.O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).

    Article  MathSciNet  Google Scholar 

  3. D. Glötzel, B. Segall, and O.K. Andersen, Solid State Commun. 36, 403 (1980); A.K. McMahan, Phys. Rev. B 30, 5835 (1984).

    Article  ADS  Google Scholar 

  4. R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).

    Article  ADS  Google Scholar 

  5. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  6. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    Article  ADS  Google Scholar 

  7. K.H. Weyrich, Phys. Rev. B 37, 10269 (1988).

    Article  ADS  Google Scholar 

  8. S.Y. Savrasov, Phys. Rev. B 54, 16470 (1996).

    Article  ADS  Google Scholar 

  9. M. Methfessel, Phys. Rev. B 38, 1537 (1988); M. Methfessel, C.O. Rodriguez, and O.K. Andersen, Phys. Rev. B 40, 2009 (1989).

    Article  ADS  Google Scholar 

  10. M. Methfessel and M. van Schilfgaarde, Phys. Rev. B 48, 4937 (1993).

    Article  ADS  Google Scholar 

  11. M. Springborg and O.K. Andersen, J. Chem. Phys. 87, 7125 (1987).

    Article  ADS  Google Scholar 

  12. E. Bott, Diplomarbeit, Technical University Darmstadt (1997); E. Bott, M. Methfessel, W. Krabs, and P.C. Schmidt, J. Math. Phys. 39, 3393 (1998).

    Google Scholar 

  13. G.B. Bachelet, D.R. Haman, and M. Schlüter, Phys. Rev. B 26, 4199 (1982).

    Article  ADS  Google Scholar 

  14. M. Methfessel, NFP Manual (Institute for Semiconductor Physics, Frankfurt (Oder), 1997).

    Google Scholar 

  15. J. Harris, Phys. Rev. B 31, 1770 (1985); W.M.C. Foulkes and R. Haydock, Phys. Rev. B 39, 12 520 (1989).

    Article  ADS  Google Scholar 

  16. P. Pulay, Mol. Phys. 17, 197 (1969).

    Article  ADS  Google Scholar 

  17. A. Dal Corso and R. Resta, Phys. Rev. B 50, 4327 (1994).

    Article  ADS  Google Scholar 

  18. C.-Y. Yeh, Z. W. Lu, S. Froyen and A. Zunger, Phys. Rev. B 46, 10086 (1992).

    Article  ADS  Google Scholar 

  19. K. Osamura, S. Naka and Y. Murakami, J. Appl. Phys. 46, 3432 (1975).

    Article  ADS  Google Scholar 

  20. S. Strite, D. Chandrasekhar, D. J. Smith, J. Sariel, N. Teraguchi and H. Morkoç, J. Crys. Growth 127, 204 (1993).

    Article  ADS  Google Scholar 

  21. H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov and M. Burns, J. Appl. Phys. 76, 1363 (1994).

    Article  ADS  Google Scholar 

  22. P. Petrov, E. Mojab, R. C. Powell and J. E. Greene Appl. Phys. Lett. 60 2491(1992).

    Article  ADS  Google Scholar 

  23. M. J. Paisley, Z. Sitar, J. B. Posthill and R. F. Davis, J. Vac. Sci. Technol. A7 1701 (1989).

    Google Scholar 

  24. S. Strite, J. Ruan, Z. Li, A. Salvador, H. Chen D. J. Smith, W. Y. Choyke and H. Morkoç, J. Vac. Sci. Technol. B 9, 1924 (1991).

    Article  Google Scholar 

  25. R. C. Powell, G. A. Tomasch, Y.-W. Kim, J. A. Thornton and J. E. Green, Mater. Res. Soc. Symp. Proc. 162, 525 (1990).

    Google Scholar 

  26. T. Lei, M. Fanciulli, R. J. Molnar, T. D. Moustakas, R. J. Graham and J. Scanlon, Appl. Phys. Lett. 59, 944 (1991).

    Article  ADS  Google Scholar 

  27. M. Mizuta, S. Fujieda, Y. Matsumoto and T. Kawamura, Jpn. J. Appl. Phys. 25, L945 (1986).

    Article  ADS  Google Scholar 

  28. H. Schulz and K. H. Thiemann, Sol. State Commun. 23, 815 (1977).

    Article  ADS  Google Scholar 

  29. M. van Schilfgaarde, A. Sher and A.-B. Chen “Theory of AlN, GaN, InN and Their Alloys,” J. Crystal Growth 178, 8 (1997).

    Article  ADS  Google Scholar 

  30. S.-H.-Wei, private communication.

    Google Scholar 

  31. A. F. Wright and J. S. Nelson, Phys. Rev. B51, 7866 (1995); A. F. Wright and J. S. Nelson, Phys. Rev. B50, 2159 (1994).

    Article  ADS  Google Scholar 

  32. U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).

    Article  ADS  Google Scholar 

  33. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  34. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993); G. Kresse, Thesis, Technische Universität Wien 1993; G. Kresse and J. Furthmüller, Comput. Mat. Sci. 6, 15-50 (1996); G. Kresse and J. Furthmüller, Phys. Rev. B54, 11169 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Methfessel, M., van Schilfgaarde, M., Casali, R.A. (1999). A Full-Potential LMTO Method Based on Smooth Hankel Functions. In: Dreyssé, H. (eds) Electronic Structure and Physical Properies of Solids. Lecture Notes in Physics, vol 535. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46437-9_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-46437-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67238-8

  • Online ISBN: 978-3-540-46437-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics