Skip to main content

Relaxation and Noise in Chaotic Systems

  • Chapter
  • First Online:
Dynamics of Dissipation

Part of the book series: Lecture Notes in Physics ((LNP,volume 597))

Abstract

For a class of idealized chaotic systems (hyperbolic systems) correlations decay exponentially in time. This result is asymptotic and rigorous. The decay rate is related to the Ruelle-Pollicott resonances. Nearly all chaotic model systems, that are studied by physicists, are not hyperbolic. For many such systems it is known that exponential decay takes place for a long time. It may not be asymptotic, but it may persist for a very long time, longer than any time of experimental relevance. In this review a heuristic method for calculation of this exponential decay of correlations in time is presented. It can be applied to model systems, where there are no rigorous results concerning this exponential decay. It was tested for several realistic systems (kicked rotor and kicked top) in addition to idealized systems (baker map and perturbed cat map). The method consists of truncation of the evolution operator (Frobenius-Perron operator), and performing all calculations with the resulting finite dimensional matrix. This finite dimensional approximation can be considered as coarse graining, and is equivalent to the effect of noise. The exponential decay rate of the chaotic system is obtained when the dimensionality of the approximate evolution operator is taken to infinity, resulting in infinitely fine resolution, that is equivalent to vanishing noise. The corresponding Ruelle-Pollicott resonances can be calculated for many systems that are beyond the validity of the Ruelle-Pollicott theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. Ott, Chaos in Dynamical Systems, (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  2. V.I. Arnold and A. Avez, Ergodic Problems of Classical Mechanics, (Addison-Wesley NY, 1989).

    MATH  Google Scholar 

  3. F. Haake, Quantum Signatures of Chaos, (Springer-Verlag, Berlin, 1991).

    MATH  Google Scholar 

  4. B.G Schuster, Deterministic Chaos, An Introduction, (Physik-Verlag, Weinheim, 1984).

    MATH  Google Scholar 

  5. P. Gaspard, Chaos, Scattering and Statistical Mechanics, (Cambridge Press, Cambridge 1998).

    Book  MATH  Google Scholar 

  6. J.R. Dorfman, An Introduction to Chaos in Non-Equilibrium Statistical Mechanics, (Cambridge Press, Cambridge 1999).

    Book  Google Scholar 

  7. A.J. Lichtenberg and M.A. Lieberman, Regular and Stochastic Motion (Springer, NY 1983).

    MATH  Google Scholar 

  8. F. L. Moore, J. C. Robinson, C. F. Bharucha, Bala Sundaram and M. G. Raizen, Phys. Rev. Lett. 75, 4598 (1995); C. F. Bharucha, J. C. Robinson, F. L. Moore, Qian Niu, Bala Sundaram and M. G. Raizen, Phys. Rev. E 60, 3881 (1999).

    Article  ADS  Google Scholar 

  9. B. Fischer, A. Rosen, A. Bekker and S. Fishman, Phys. Rev. E, R4694 (2000).

    ADS  Google Scholar 

  10. **J. Weber, F. Haake, P.A. Braun, C. Manderfeld and P. Å eba, J. Phys. A34, 7195 (2001).

    ADS  Google Scholar 

  11. M. V. Berry, in New trends in Nuclear Collective Dynamics, eds: Y. Abe, H. Horiuchi, K. Matsuyanagi, Springer proceedings in Physics. vol 58, 183–186 (1992).

    Google Scholar 

  12. D. Ruelle, Phys. Rev. Lett. 56, 405 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  13. **H.H. Hasegawa and W.C. Saphir, Phys. Rev. A46, 7401 (1992).

    ADS  MathSciNet  Google Scholar 

  14. S. Fishman, in Supersymmetry and Trace Formulae, Chaos and Disorder, edited by I.V. Lerner, J.P. Keating, D.E. Khmelnitskii (Kluwer Academic / Plenum Publishers, New York, 1999).

    Google Scholar 

  15. A. Jordan and M. Srednicki, The approach to Ergodicity in the Quantum Baker’s Map, nlin.CD/0108024 (2001), This paper contains also some results on the classical baker’s map, that are relevant for the present review.

    Google Scholar 

  16. G. Blum and O. Agam, Phys. Rev. E62, 1977 (2000).

    ADS  Google Scholar 

  17. J. Weber, F. Haake and P. Å eba, Phys. Rev. Lett. 85, 3620 (2000).

    Article  ADS  Google Scholar 

  18. C. Manderfeld, J. Weber and F. Haake, J. Phys. A34, 9893 (2001).

    ADS  MathSciNet  Google Scholar 

  19. **M. Khodas, S. Fishman and O. Agam, Phys. Rev. E62, 4769 (2000).

    ADS  Google Scholar 

  20. M. Khodas and S. Fishman, Phys. Rev. Lett. 84, 2837 (2000); Erratum 84, 5918 (2000).

    Article  ADS  Google Scholar 

  21. We thank E. Bogomolny, M. Saraceno, M. Srednicki and A. Jordan for illuminating comments.

    Google Scholar 

  22. M. Basilio de Matos and A.M. Ozorio de Almeida, Ann. Phys. (N.Y.) 237, 46 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Balescu, Statistical Dynamics, Matter out of Equilibrium, (Imperial College Press, Singapore, 1983).

    Google Scholar 

  24. A.B. Rechester and R.B. White, Phys. Rev. Lett. 44, 1586 (1980); A.B. Rechester M.N. Rosenbluth and R.B. White, Phys. Rev. A23, 2664 (1981); E. Doron and S. Fishman, Phys. Rev. A37, 2144 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  25. B. Sundaram and G.M. Zaslavsky, Phys. Rev. E59, 7231 (1999); G.M. Zaslavsky, M. Edelman and B.A. Niyazov, Chaos 7, 159 (1997).

    ADS  Google Scholar 

  26. P. Gaspard, G. Nicolis, A. Provata and S. Tasaki, Phys. Rev. E 51, 74 (1995).

    ADS  MathSciNet  Google Scholar 

  27. A. Ostruszka and K. Życzkowski, Phys. Lett. A 289, 306 (2001).

    ADS  Google Scholar 

  28. K. Knopp, Infinite Sequences and Series, (Dover publ. NY, 1956).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fishman, S., Rahav, S. (2002). Relaxation and Noise in Chaotic Systems. In: Garbaczewski, P., Olkiewicz, R. (eds) Dynamics of Dissipation. Lecture Notes in Physics, vol 597. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46122-1_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-46122-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44111-3

  • Online ISBN: 978-3-540-46122-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics