Skip to main content

Jump Time and Passage Time: The Duration of a Quantum Transition

  • Chapter
  • First Online:
Time in Quantum Mechanics

Part of the book series: Lecture Notes in Physics ((LNPMGR,volume 72))

Abstract

It is ironic that experimentally time is the most accurately measured physical quantity, while in quantum mechanics one must struggle to provide a definition of so practical a concept as time of arrival. Historically, one of the first temporal quantities analyzed in quantum mechanics was lifetime, a property of an unstable state. The theory of this quantity is satisfactory in two ways. First, with only the smallest of white lies, one predicts exponential decay, and generally this is what one sees. Second, at the quantitative level, one finds good agreement with a simply derived formula, the Fermi-Dirac Golden rule, Γ = 2π/ħρ(E)|〈f|H|i|2. (4.1) Equation (4.1) uses standard notation. Γ is the transition rate from an initial (unstable) state |i〉 to a final state |f〉. The transition occurs by means of a Hamiltonian H. The density of (final) states is ρ, evaluated at the (common) energy of the states |i〉 and |f〉. In terms of Γ, the lifetime is τL = 1/Γ

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.B. Plenio, P.L. Knight: The quantum-jump approach to dissipative dynamics in quantum optics, Rev. Mod. Phys. 70, 101 (1998)

    Article  ADS  Google Scholar 

  2. D. Mugnai, A. Ranfagni and L. S. Schulman: Tunneling and its Implications (World Scientific, Singapore 1997). Proc. Adriatico Research Conf., Trieste, Italy

    Google Scholar 

  3. N. Yamada: Speakable and Unspeakable in the Tunneling Time Problem, Phys. Rev. Lett. 83, 3350 (1999)

    Article  ADS  Google Scholar 

  4. L.S. Schulman, R.W. Ziolkowski: ‘Path Integral Asymptotics in the Absence of Classical Paths’. In: Path Integrals from me V to MeV, ed. by V. Sa-yakanit et al. (World Scientific, Singapore 1989) pp. 253–278

    Google Scholar 

  5. D. Sokolovski, L.M. Baskin: Traversal time in quantum scattering, Phys. Rev. A 36, 4604 (1987)

    Article  ADS  Google Scholar 

  6. H.A. Fertig: Traversal-Time Distribution and the Uncertainty Principle in Quantum Tunneling, Phys. Rev. Lett. 65, 2321 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. J.C. Bergquist, R.G. Hulet, W.M. Itano, D J. Wineland: Observation of Quantum Jumps in a Single Atom, Phys. Rev. Lett. 57, 1699 (1986)

    Article  ADS  Google Scholar 

  8. T. Sauter, W. Neuhauser, R. Blatt, P.E. Toschek: Observation of Quantum Jumps, Phys. Rev. Lett. 57, 1696 (1986)

    Article  ADS  Google Scholar 

  9. W. Nagourney, J. Sandberg, H. Dehmelt: Shelved Optical Electron Amplifier: Observation of Quantum Jumps, Phys. Rev. Lett. 56, 2797 (1986)

    Article  ADS  Google Scholar 

  10. L.S. Schulman: ‘How quick is a quantum jump?’, p. 121, in [2]

    Google Scholar 

  11. R.M. Eisberg: Fundamentals of Modern Physics (Wiley, New York 1961)

    MATH  Google Scholar 

  12. G.N. Fleming: A Unitarity Bound on the Evolution of Nonstationary States, Nuov. Cim. 16 A, 232 (1973). Fleming cites [39] and [40] as partial sources.

    Article  ADS  Google Scholar 

  13. For a review, see H. Nakazato, M. Namiki, S. Pascazio: Temporal behavior of quantum mechanical systems, Int. J. Mod. Phys. B 10, 247 (1996)

    Article  ADS  Google Scholar 

  14. L.S. Schulman, A. Ranfagni, D. Mugnai: Characteristic scales for dominated time evolution, Physica Scripta 49, 536 (1994)

    Article  ADS  Google Scholar 

  15. A.G. Kofman, G. Kurizki: Acceleration of quantum decay processes by frequent observations, Nature 405, 546 (2000)

    Article  ADS  Google Scholar 

  16. L.S. Schulman: Observational line broadening and the duration of a quantum jump, J. Phys. A 30, L293 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. J. Hilgevoord: The uncertainty principle for energy and time, Am. J. Phys. 64, 1451 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Sudbery: The Observation of Decay, Ann. Phys. 157, 512 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  19. K. Kraus: Measuring Processes in Quantum Mechanics I. Continuous Observation and the Watchdog Effect, Found. Phys. 11, 547 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Peres: Zeno paradox in quantum theory, Am. J. Phys. 48, 931 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Peres: ‘Continuous Monitoring of Quantum Systems’. In: Information, Complexity and Control in Quantum Physics (Springer, Berlin 1987) p. 235

    Google Scholar 

  22. L.S. Schulman: Continuous and pulsed observations in the quantum Zeno effect, Phys. Rev. A 57, 1509 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  23. E. Mihokova, S. Pascazio, L.S. Schulman: Hindered decay: Quantum Zeno effect through electromagnetic field domination, Phys. Rev. A 56, 25 (1997)

    Article  ADS  Google Scholar 

  24. S.R. Wilkinson, C.F. Bharucha, M.C. Fischer, K.W. Madison, P.R. Morrow, Q. Niu, B. Sundaram, M.G. Raizen: Experimental evidence for non-exponential decay in quantum tunneling, Nature 387, 575 (1997)

    Article  ADS  Google Scholar 

  25. L.S. Schulman: Jump time in Landau-Zener tunneling, Phys. Rev. A 58, 1595 (1998)

    Article  ADS  Google Scholar 

  26. Q. Niu, M.G. Raizen: How Landau-Zener tunneling takes time, Phys. Rev. Lett. 80, 3491 (1998)

    Article  ADS  Google Scholar 

  27. R. A. Harris, L. Stodolsky: On the time dependence of optical activity, J. Chem. Phys. 74, 2145 (1981); J.A. Cina, R.A. Harris: Superpositions of handed wave functions, Science 267, 832 (1995); R. Silbey, R.A. Harris: Tunneling of Molecules in Low-Temperature Media: An Elementary Description, J. Phys. Chem. 93, 7062 (1989)

    Article  ADS  Google Scholar 

  28. M. Simonius: Spontaneous symmetry breaking and blocking of metastable states, Phys. Rev. Lett. 40, 980 (1978)

    Article  ADS  Google Scholar 

  29. L.S. Schulman: Time’s Arrows and Quantum Measurement (Cambridge University Press, Cambridge 1997)

    Google Scholar 

  30. L.S. Schulman: Definite Quantum Measurements, Ann. Phys. 212, 315 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  31. L.S. Schulman: ‘A Time Scale for Quantum Jumps’. In: Macroscopic Quantum Tunneling and Coherence, ed. by A. Barone, F. Petruccione, B. Ruggiero and P. Silvestrini (World Scientific, Singapore 1999)

    Google Scholar 

  32. L.S. Schulman, C.R. Doering, B. Gaveau: Linear decay in multi-level quantum systems, J. Phys. A 24, 2053 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. L.S. Schulman: Definite Measurements and Deterministic Quantum Evolution, Phys. Lett. A 102, 396 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  34. L.S. Schulman: Deterministic Quantum Evolution through Modification of the Hypotheses of Statistical Mechanics, J. Stat. Phys. 42, 689 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  35. I. Ersak: Sov. J. Nucl. Phys. 9, 263 (1969)

    Google Scholar 

  36. F. Lurçat: Strongly Decaying Particles and Relativistic Invariance, Phys. Rev. 173, 1461 (1968)

    Article  ADS  Google Scholar 

  37. A.M. Lane: Decay at early times: larger or smaller than the Golden Rule?, Phys. Lett. A 99, 359 (1983)

    Article  ADS  Google Scholar 

  38. W.C. Schieve, L.P. Horwitz, J. Levitan, Numerical study of Zeno and anti-Zeno effects in a local potential model, Phys. Lett. A 136, 264 (1989)

    Article  ADS  Google Scholar 

  39. P. Facchi, S. Pascazio: Quantum Zeno effects with “pulsed” and “continuous” measurements, preprint, quant-ph/0101044

    Google Scholar 

  40. S. Pascazio: Quantum Zeno effect and inverse Zeno effect in Quantum Interferometry, ed. F. De Martini et al. (VCH Publishing Group, Weinheim, 1996) p. 525

    Google Scholar 

  41. P. Facchi, S. Pascazio: Spontaneous emission and lifetime modification caused by an intense electromagnetic field, Phys. Rev. A 62 023804 (2000)

    Article  ADS  Google Scholar 

  42. P. Facchi, H. Nakazato, S. Pascazio: From the quantum Zeno to the inverse quantum Zeno effect, quant-ph/0006094, Phys. Rev. Lett. 86, 2699 (2001)

    Article  ADS  Google Scholar 

  43. P. Facchi, S. Pascazio: Quantum Zeno and inverse quantum Zeno effects, Prog. Optics 42, ed. E. Wolf (Elsevier, Amsterdam, 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schulman, L.S. (2002). Jump Time and Passage Time: The Duration of a Quantum Transition. In: Muga, J.G., Mayato, R.S., Egusquiza, I.L. (eds) Time in Quantum Mechanics. Lecture Notes in Physics, vol 72. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45846-8_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45846-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43294-4

  • Online ISBN: 978-3-540-45846-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics