Skip to main content

An Inductive Version of Nash-Williams’ Minimal-Bad-Sequence Argument for Higman’s Lemma

  • Conference paper
  • First Online:
Types for Proofs and Programs (TYPES 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2277))

Included in the following conference series:

Abstract

Higman’s lemma has a very elegant, non-constructive proof due to Nash-Williams [NW63] using the so-called minimal-bad-sequence argument. The objective of the present paper is to give a proof that uses the same combinatorial idea, but is constructive. For a two letter alphabet this was done by Coquand and Fridlender [CF94]. Here we present a proof in a theory of inductive definitions that works for arbitrary decidable well quasiorders.

Research supported by the DFG Graduiertenkolleg “Logik in der Informatik”.

Research supported by the British EPSRC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thierry Coquand and Daniel Fridlender. A proof of Higman’s lemma by structural induction, 1994. ftp://ftp.cs.chalmers.se/pub/users/coquand/open1.ps.Z

  2. Daniel Fridlender. Higman’s Lemma in Type Theory. PhD thesis, Chalmers University of Technology and University of Göteburg, Sweden, Oktober 1997.

    Google Scholar 

  3. Graham Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc., 2:326–336, 1952.

    Google Scholar 

  4. Alberto Marcone. On the logical strength of Nash-Williams’ theorem on trans-finite sequences. In: Logic: from Foundations to Applications; European logic colloquium, pp. 327–351, 1996.

    Google Scholar 

  5. Chetan R. Murthy and James R. Russell. A Constructive proof of Higman’s Lemma. In Proc. Fifth Symp. on Logic in Comp. Science, pp. 257–267, 1990.

    Google Scholar 

  6. Chetan R. Murthy. An Evaluation Semantics for Classical Proofs. In Proc. Sixth Symp. on Logic in Computer Science, pp. 96–109, 1991.

    Google Scholar 

  7. Crispin St. J. A. Nash-Williams. On well-quasi-ordering finite trees. Proc. Cambridge Phil. Soc., 59:833–835, 1963.

    Google Scholar 

  8. Michael Rathjen and Andreas Weiermann. Proof-theoretic investigations on Kruskal’s theorem. Annals of Pure and Applied Logic, 60:49–88, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  9. Fred Richman and Gabriel Stolzenberg. Well Quasi-Ordered Sets. Advances in Math., 97:145–153, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  10. Monika Seisenberger. Kruskal’s tree theorem in a constructive theory of inductive definitions In: Reuniting the Antipodes-C onstructive and Nonstandard Views of the Continuum. Synthese Library, Kluwer, Dordrecht, forthcoming.

    Google Scholar 

  11. Kurt Schütte and Stephen G. Simpson. Ein in der reinen Zahlentheorie unbeweisbarer Satz über endliche Folgen von natürlichen Zahlen. Archiv für Mathematische Logik und Grundlagenforschung, 25:75–89, 1985.

    Article  MATH  Google Scholar 

  12. Stephen G. Simpson. Nonprovability of certain combinatorial properties of finite trees. In L.A. Harrington, et al., eds., Harvey Friedman’s Research on the Foundations of Mathematics, pp. 87–117. North-Holland, Amsterdam, 1985.

    Google Scholar 

  13. Diana Schmidt. Well-orderings and their maximal order types, 1979. Habilitationsschrift, Mathematisches Institut der Universität Heidelberg.

    Google Scholar 

  14. Wim Veldman. An intuitionistic proof of Kruskal’s Theorem. Report no. 0017, Department of Mathematics, University of Nijmegen, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seisenberger, M. (2002). An Inductive Version of Nash-Williams’ Minimal-Bad-Sequence Argument for Higman’s Lemma. In: Callaghan, P., Luo, Z., McKinna, J., Pollack, R., Pollack, R. (eds) Types for Proofs and Programs. TYPES 2000. Lecture Notes in Computer Science, vol 2277. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45842-5_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-45842-5_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43287-6

  • Online ISBN: 978-3-540-45842-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics