Skip to main content

On the Proofs of Some Formally Unprovable Propositions and Prototype Proofs in Type Theory

  • Conference paper
  • First Online:
Types for Proofs and Programs (TYPES 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2277))

Included in the following conference series:

Abstract

At the age of 7 or 8, Gauss was asked to produce the result of the sum of the first n integers (or, perhaps, the question was slightly less general...). He then proved a theorem, by the following method:

$$ \frac{{\begin{array}{*{20}c} 1 \\ n \\ \end{array} \begin{array}{*{20}c} 2 \\ {(n - 1)} \\ \end{array} \begin{array}{*{20}c} {...} \\ {...} \\ \end{array} \begin{array}{*{20}c} n \\ 1 \\ \end{array} }} {{\left( {n + 1} \right)\left( {n + 1} \right)...\left( {n + 1} \right)}} $$

which gives ∑ n1 i = n(n + 1)/2.

Clearly, the proof is not by induction. Given n, a uniform argument is proposed, which works for any integer n. Following Herbrand, we will call prototype this kind of proof. Of course, once the formula is known, it is very easy to prove it by induction, as well. But, one must know the formula, or, more generally, the “induction load”. A non-obvious issue in automatic theorem proving, as we all know.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aczel P., “An introduction to inductive definitions”, Handbook of Mathematical Logic, Barwise ed., 1978.

    Google Scholar 

  2. Altenkirch T. “A formalization of the Strong Normalization proof for System F in Lego”, December 1992.

    Google Scholar 

  3. Asperti A., Longo G. Categories, Types and Structures, M.I.T. Press, 1991.

    Google Scholar 

  4. Berardi S. “Girard’s normalization in Lego”, Univ. Torino, 1991.

    Google Scholar 

  5. Boi L. Le problème mathématique de l’espace, Springer, 1995.

    Google Scholar 

  6. Bottazzini U., Tazzioli R., “Naturphilosophie and its role in Riemann’s mathematics”, Revue d’Histoire des Mathématiques n. 1, 3–38, 1995.

    Google Scholar 

  7. Brouwer L. “Consciousness, Philosophy and Mathematics”, 1948, in Collected Works vol. 1 (Heyting ed.), North-Holland, 1975

    Google Scholar 

  8. Castagna G., Ghelli G. and Longo G. “A calculus for overloaded functions with subtyping”, Information and Computation, 117(1):115–135, Feb. 1995.

    Article  MATH  MathSciNet  Google Scholar 

  9. Connes A. Non-commutative Geometry, Academic Press, 1994.

    Google Scholar 

  10. Coquand T., Huet G. “The calculus of Constructions” Information and Computation, 76, 95–120, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  11. van Dalen D. “Brouwer’s dogma of languageless mathematics and its role in his writings” Significs, Mathematics and Semiotics (Heijerman ed.), N.H., 1991.

    Google Scholar 

  12. Dehaene S. The Number Sense, OxfordUP, 1998. (Review/article downloadable from http://www.di.ens.fr/users/longo, as well as all Longo’s papers below)

  13. Enriques F. Problemi della Scienza, 1901.

    Google Scholar 

  14. Enriques F. “Philosophie Scientifique”, in Actes du Congrès International de Philosophie Scientifique, Paris, 1935, Hermann, Paris, vol.I, 1936.

    Google Scholar 

  15. Faracovi O. “Ragione e progresso nell’opera di Enriques”, in Federigo Enriques. Approssimazione e verita’, a cura di O.P. Faracovi, Belforte, Livorno, 1982.

    Google Scholar 

  16. Floyd J. “Wittgenstein on Gödel and Mathematics”, Conference on “Wittgenstein et les Fondements des Mathématiques”, ENS, Paris, 1998 (to appear).

    Google Scholar 

  17. Frege G. The Foundations of Arithmetic, 1884 (Engl. transl. Evanston, 1980.)

    Google Scholar 

  18. Friedman H. “Some Historical Perspectives on Certain Incompleteness Phenomena”, May 21, 5 pages, draft, 1997.

    Google Scholar 

  19. Gallier J., “What is so special about Kruskal’s theorem and the ordinal Γ0?” Ann. Pure. Appl.Logic, 53, 1991.

    Google Scholar 

  20. Girard J.Y., Lafont Y., Taylor P. Proofs and Types, Cambridge U. Press, 1989.

    Google Scholar 

  21. Girard J.Y., “Locus Solum”, Mathematical Structures in Computer Science, vol.11, n.3, 2001.

    Google Scholar 

  22. Goldfarb H., Jacques Herbrand: Logical Writings, 1987.

    Google Scholar 

  23. Harrington L. et al. (eds) H. Friedman’s Research on the Foundations of Mathematics, North-Holland, 1985.

    Google Scholar 

  24. Heinzmann G. “Wittgenstein et le théorème de Gödel”, Actes du Colloque sur “Wittgenstein et la philosophie aujourd’hui” (Klinschsiech), 1990.

    Google Scholar 

  25. Husserl E., The origin of Geometry, part of Krysis, 1933.

    Google Scholar 

  26. Lambek J., Scott P.J., Introduction to higher order Categorical Logic, Cambridge University Press, 1986.

    Google Scholar 

  27. Lawvere F.W. “Variable quantities and variable structures in topoi”, in Algebra Topology and Category Theory: A collection of papers in honor of Samuel Eilenberg, A. Heller and M. Tierney (eds.), Academic Press, (101–131), 1976.

    Google Scholar 

  28. Longo G. “Prototype proofs in Type Theory”, in Mathematical Logic Quaterly (formely: Zeit. f. Math. Logik und Grund. der Math.),vol. 46, n. 3, 2000.

    Google Scholar 

  29. Longo G. “The reasonable effectiveness of Mathematics and its Cognitive roots”, in New Interactions of Mathematics with Natural Sciences (L. Boi ed.), Springer, 2001.

    Google Scholar 

  30. Longo G. “Space and Time in the foundation of Mathematics, or some challenges in the interaction with other sciences”, invited lecture at the First AMS/SMF meeting, Lyon, July 2001 (to appear).

    Google Scholar 

  31. Longo G., Milsted K. and Soloviev S., “The genericity theorem and parametricity in the polymorphic Lambda-calculus” Theor. Comp. Sci. vol. 121, 1993.

    Google Scholar 

  32. Paris J., Harrington L., “A mathematical incompleteness in Peano Arithmetic”, Handbook of Mathematical Logic, Barwised ed., 1978.

    Google Scholar 

  33. Rathjen M., Weiermann A. “Proof-theoretic investigations on Kruskal’s theorem.” Annals of Pure and Applied Logic,60, 49–88, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  34. Riemann B. “On the hypothesis which lie at the basis of geometry”, 1854 (English transl. by W. Clifford, Nature, 1873).

    Google Scholar 

  35. Tappenden J. “Geometry and generality in Frege’s philosophy of Arithmetic” Synthese, n. 3, vol. 102, March 1995.

    Google Scholar 

  36. Waismann F., Wittgenstein und der Wiener Kreis, Frankfurt a. M., Suhrkamp, 1967 (Waismann’s notes: 1929-31). (English translation: Wittgenstein and the Vienna circle: conversations recorded by Friedrich Waismann, Barnes & Noble Books, New York, 1979)

    Google Scholar 

  37. Weyl H. Philosophy of Mathematics and of Natural Sciences, 1927 (Engl. transl., Princeton University Press, Princeton, New Jersey, 1949).

    Google Scholar 

  38. Wittgenstein L. Philosophical Remarks. Engl. transl. by G. E. M. Anscombe, Barnes & Noble, New York, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Longo, G. (2002). On the Proofs of Some Formally Unprovable Propositions and Prototype Proofs in Type Theory. In: Callaghan, P., Luo, Z., McKinna, J., Pollack, R., Pollack, R. (eds) Types for Proofs and Programs. TYPES 2000. Lecture Notes in Computer Science, vol 2277. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45842-5_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-45842-5_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43287-6

  • Online ISBN: 978-3-540-45842-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics