Skip to main content

Cellular Automata Models for Transportation Applications

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2493))

Included in the following conference series:

Abstract

This paper gives an overview of the use of CA modes for transportation applications. In transportation applications, the CA dynamics is embedded within several other concepts, such as the fact that the dynamics unfolds on a graph instead of on flat 2d space, or multi-agent modeling. The paper also discusses the the limits of the CA technology in traffic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Krauβ. Microscopic modeling of traffic flow: Investigation of collision free vehicle dynamics. PhD thesis, University of Cologne, Germany, 1997. See http://www.zpr.uni-koeln.de.

    Google Scholar 

  2. K. Nagel and H. J. Herrmann. Deterministic models for traffic jams. Physica A, 199:254, 1993.

    Article  MATH  Google Scholar 

  3. S. Wolfram. Theory and Applications of Cellular Automata. World Scientific, Singapore, 1986.

    MATH  Google Scholar 

  4. K. Nagel and M. Schreckenberg. A cellular automaton model for freeway traffic. Journal de Physique I France, 2:2221, 1992.

    Article  Google Scholar 

  5. D. Chowdhury, L. Santen, and A. Schadschneider. Statistical physics of vehicular traffic and some related systems. Physics Reports, 329(4–6): 199–329, May 2000.

    Google Scholar 

  6. K. Nagel, P. Stretz, M. Pieck, S. Leckey, R. Donnelly, and L. Barrett. TRANSIMS traffic flow characteristics. Los Alamos Unclassified Report (LA-UR) 97-3530, Los Alamos National Laboratory, see http://transims.tsasa.lanl.gov, 1997.

  7. B. S. Kerner and H. Rehborn. Experimental features and characteristics of traffic jams. Physical Review E, 53(2):R1297–R1300, 1996.

    Article  Google Scholar 

  8. B. S. Kerner and H. Rehborn. Experimental properties of complexity in traffic flow. Physical Review E, 53(5):R4275–R4278, 1996.

    Article  Google Scholar 

  9. R. Barlovic, L. Santen, A. Schadschneider, and M. Schreckenberg. Metastable states in cellular automata. European Physical Journal B, 5(3):793–800, 10 1998.

    Article  Google Scholar 

  10. D. Chowdhury, L. Santen, A. Schadschneider, S. Sinha, and A. Pasupathy. Spatio-temporal organization of vehicles in a cellular automata model of traffic with’ slow-to-start’ rule. Journal of Physics A-Mathematical and General, 32:3229, 1999.

    Article  MATH  Google Scholar 

  11. W. Brilon and N. Wu. Evaluation of cellular automata for traffic flow simulation on freeway and urban streets. In W. Brilon, F. Huber, M. Schreckenberg, and H. Wallentowitz, editors, Traffic and Mobility: Simulation-Economics-Environment, pages 163–180. Aachen, Germany, 1999.

    Google Scholar 

  12. D.E. Wolf. Cellular automata for traffic simulations. Physica A, 263:438–451, 1999.

    Article  MathSciNet  Google Scholar 

  13. L. Barrett, M. Wolinsky, and M. W. Olesen. Emergent local control properties in particle hopping traffic simulations. In D.E. Wolf, M. Schreckenberg, and A. Bachem, editors, Traffic and granular flow, pages 169–173. World Scientific, Singapore, 1996.

    Google Scholar 

  14. M. Takayasu and H. Takayasu. Phase transition and 1/f type noise in one dimensional asymmetric particle dynamics. Fractals, 1(4):860–866, 1993.

    Article  MATH  Google Scholar 

  15. B. S. Kerner and P. Konhäuser. Structure and parameters of clusters in traffic flow. Physical Review E, 50(1):54, 1994.

    Article  Google Scholar 

  16. L. Roters, S. Lübeck, and K.D. Usadel. Critical behavior of a traffic flow model. Physical Review E, 59:2672, 1999.

    Article  Google Scholar 

  17. M. Sasvari and J. Kertesz. Cellular automata models of single lane traffic. Physical Review E, 56(4):4104–4110, 1997.

    Article  Google Scholar 

  18. D. Chowdhury et al. Comment on: “Critical behavior of a traffic flow model”. Physical Review E, 61(3):3270–3271, 2000.

    Article  Google Scholar 

  19. K. Nagel, Chr. Kayatz, and P. Wagner. Breakdown and recovery in traffic flow models. In Y. Sugiyama et al, editor, Traffic and granular flow’ 01. Springer, Heidelberg, in press.

    Google Scholar 

  20. K. Nagel, D.E. Wolf, P. Wagner, and P. M. Simon. Two-lane traffic rules for cellular automata: A systematic approach. Physical Review E, 58(2): 1425–1437, 1998.

    Article  Google Scholar 

  21. M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour. Two lane traffic simulations using cellular automata. Physica A, 231:534, 1996.

    Article  Google Scholar 

  22. A. Dupuis and B. Chopard. Cellular automata simulations of traffic: a model for the city of Geneva. Networks and Spatial Economics, forthcoming.

    Google Scholar 

  23. Planung Transport und Verkehr (PTV) GmbH. See http://www.ptv.de.

  24. City-traffic. Fraunhofer Institut Autonome Intelligente Systeme (AIS). See http://www.citytraffic.de.

  25. See http://www.inf.ethz.ch/~nagel/projects/alpsim.

  26. K. Nagel, J. Esser, and M. Rickert. Large-scale traffic simulation for transportation planning. In D. Stauffer, editor, Annual Reviews of Computational Physics, pages 151–202. World Scientific, 2000.

    Google Scholar 

  27. S. Krauβ. Microscopic modeling of traffic flow: Investigation of collision free vehicle dynamics. PhD thesis, University of Cologne, Germany, 1997. See http://www.zpr.uni-koeln.de.

    Google Scholar 

  28. P. Wagner. Traffic simulations using cellular automata: Comparison with reality. In D E Wolf, M. Schreckenberg, and A. Bachem, editors, Traffic and Granular Flow. World Scientific, Singapore, 1996.

    Google Scholar 

  29. N. Cetin and K. Nagel, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nagel, K. (2002). Cellular Automata Models for Transportation Applications. In: Bandini, S., Chopard, B., Tomassini, M. (eds) Cellular Automata. ACRI 2002. Lecture Notes in Computer Science, vol 2493. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45830-1_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-45830-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44304-9

  • Online ISBN: 978-3-540-45830-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics