Skip to main content

Numerical Experiments at Null Infinity

  • Chapter
  • First Online:
The Conformal Structure of Space-Time

Part of the book series: Lecture Notes in Physics ((LNP,volume 604))

Abstract

By comparing formal asymptotic expansions with the results of highly accurate numerical simulations using null quasi-spherical (NQS) coordinates, we develop a clear and consistent picture of the structure of the gravitational field for asymptotically flat spacetimes near null infinity. In particular, we find that “generic” space-times (in a sense to be made precise) have Weyl tensor components ψ 0 = O(r −4), ψ 1 = O(r −4 log r), contrary to the Penrose-Sachs peeling hypothesis. This confirms results of Chruściel-MacCallum-Singleton, obtained using Bondi coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Bartnik. Einstein equations in the null quasi-spherical gauge. Class. Quant. Gravity, 14, 2185–2194, 1997. Gr-qc/9611045.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. R. Bartnik. Shear-free null quasi-spherical spacetimes. J. Math. Phys., 38, 5774–5791, 1997. Gr-qc/9705079.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. R. Bartnik. Assessing accuracy in a numerical Einstein solver. In G. Weinstein and R. Weikard, eds., Differential Equations and Mathematical Physics: UAB-GIT 99, AMS/IP Studies in Advanced Mathematics, volume 16, 11–19 (International Press, 2000).

    Google Scholar 

  4. R. Bartnik and A. Norton. NQS data explorer. Tech. rep., University of Canberra, 1997. http://relativity.ise.canberra.edu.au.

  5. R. Bartnik and A. Norton. Numerical methods for the Einstein equations in null quasi-spherical coordinates. SIAM J. Sci. Comp., 22, 917–950, 2000. Grqc/9904045.

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Bondi. Gravitational waves in general relativity. Nature, 186, 535, 1960.

    Article  ADS  MATH  Google Scholar 

  7. H. Bondi, M. G. J. van der Berg, and A. W. K. Metzner. Gravitational waves in general relativity VII. Proc. Roy. Soc. Lond. A, 269, 21–51, 1962.

    Article  MATH  ADS  Google Scholar 

  8. P. T. Chruściel, M. A. H. MacCallum, and D. B. Singleton. Gravitational waves in general relativity XIV. Bondi expansions and the polyhomogeneity of scri. 1993.

    Google Scholar 

  9. M. Eastwood and P. Tod. Edth — a differential operator on the sphere. Math. Proc. Camb. Phil. Soc., 92, 317–330, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Einstein. Der Energiesatz in der allgemeinen Relativitätstheorie. Sitzungsber. Preuss. Akad. Wissensch., 448, 1918.

    Google Scholar 

  11. F. Klein. Über die Integralform der Erhaltungssätze und die Theorie der räumlich geschlossenen Welt. Nachr. Ges. Wissensch. Göttingen, 394, 1918.

    Google Scholar 

  12. R. Penrose. Asymptotic properties of fields and space-times. Phys. Rev. Lett., 10, 66–68, 1963. Penrose conformal completion of null infinity.

    Article  ADS  MathSciNet  Google Scholar 

  13. R. Penrose. The geometry of impulsive gravitational waves. In L. O’Raifaertaigh, ed., General Relativity: in honour of J.L.Synge (Oxford, 1972).

    Google Scholar 

  14. R. Penrose and W. Rindler. Spinors and Spacetimes II: Spinor and twistor methods in space-time geometry (Cambridge UP, 1986).

    Google Scholar 

  15. R. K. Sachs. Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time. Proc. Roy. Soc. Lond., A270, 103–126, 1962.

    ADS  MathSciNet  Google Scholar 

  16. M. Spillane. The Einstein equations in the null quasi-spherical gauge. Ph.D. thesis, Australian National University, 1994.

    Google Scholar 

  17. A. Trautman. King’s College lecture notes on general relativity, 1958.

    Google Scholar 

  18. A. Trautman. Radiation and boundary conditions in the theory of gravitation. Bull. Acad. Pol. Sci., Série sci. math., VI, 407–412, 1958.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bartnik, R.A., Norton, A.H. (2002). Numerical Experiments at Null Infinity. In: Frauendiener, J., Friedrich, H. (eds) The Conformal Structure of Space-Time. Lecture Notes in Physics, vol 604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45818-2_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-45818-2_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44280-6

  • Online ISBN: 978-3-540-45818-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics