Skip to main content

Gastric Cancer Data Mining with Ordered Information

  • Conference paper
  • First Online:
Rough Sets and Current Trends in Computing (RSCTC 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2475))

Included in the following conference series:

Abstract

Ordered information is a kind of useful background knowledge to guide a discovery process toward finding different types of novel rules and improving their quality for many real world data mining tasks. In the paper, we investigate ways of using ordered information for gastric cancer data mining, based on rough set theory and granular computing. With respect to the notion of ordered information tables, we describe how to mine ordering rules and how to form granules of values of attributes in a pre/post-processing step for improving the quality of the mined classification rules. Experimental results in gastric cancer data mining show the usefulness and effectiveness of our approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen W.W., Schapire R.E., and Singer Y. “Learning to Order Things”, Advances in Neural Information Processing Systems, Vol 10 (1998).

    Google Scholar 

  2. Dougherty, J, Kohavi, R., and Sahami, M. “Supervised and Unsupervised Discretization of Continuous Features”, Proc. 12th Inter. Conf. on Machine Learning (1995) 194–202.

    Google Scholar 

  3. Greco S., Matarazzo B., and Slowinski R. “Rough Approximation of a Preference Relation by Dominance Relations”, European Journal of Operational Research Vol. 117 (1999) 63–83.

    Article  MATH  Google Scholar 

  4. Iwinski T.B. “Ordinal Information System”, Bulletin of the Polish Academy of Sciences, Mathematics, Vol. 36 (1998) 467–475.

    MathSciNet  Google Scholar 

  5. Lin, T.Y. and Cercone, N. (ed.) Rough Sets and Data Mining: Analysis of Imprecise Data, Kluwer (1997).

    Google Scholar 

  6. Nguyen, H. Son, Skowron, A. “Boolean Reasoning for Feature Extraction Problems”, Z.W. Ras, A. Skowron (eds.), Foundations of Intelligent Systems, LNAI 1325, Springer (1997) 117–126.

    Google Scholar 

  7. Nguyen H. Son and Nguyen S. Hoa “Discretization Methods in Data Mining”, L. Polkowski, A. Skowron (eds.) Rough Sets in Knowledge Discovery, Physica-Verlag (1998) 451–482.

    Google Scholar 

  8. Pawlak, Z. Rough Sets, Theoretical Aspects of Reasoning about Data, Kluwer (1991).

    Google Scholar 

  9. Pawlak Z. and Slowinski R. “Rough set approach to multi-attribute decision analysis”. European Journal of Operational Research, Vol. 72 (1994) 443–359.

    Article  MATH  Google Scholar 

  10. Sai, Y., Yao, Y.Y., and Zhong, N. “Data Analysis and Mining in Ordered Information Tables”, Proc. 2001 IEEE International Conference on Data Mining (IEEE ICDM’01), IEEE Computer Society Press (2001) 497–504.

    Google Scholar 

  11. Yao, Y.Y. and Zhong, N. “Potential Applications of Granular Computing in Knowledge Discovery and Data Mining”, Proc. 5th Inter. Conf. on Information Systems Analysis and Synthesis (IASA’99) (1999) 573–580.

    Google Scholar 

  12. Yao, Y.Y. “Information Tables with Neighborhood Semantics”, Data Mining and Knowledge Discovery: Theory, Tools, and Technology II, Dasarathy, B.V. (Ed.), Society for Optical Engineering, Bellingham, Washington (2000) 108–116.

    Google Scholar 

  13. Yao, Y.Y. and Sai, Y. “Mining Ordering Rules Using Rough Set Theory”, Bulletin of International Rough Set Society, Vol. 5 (2001) 99–106.

    Google Scholar 

  14. Zadeh, L.A. “Fuzzy Sets and Information Granularity”, Gupta, N., Ragade, R., and Yager, R. (Eds.) Advances in Fuzzy Set Theory and Applications, North-Holland (1979) 3–18.

    Google Scholar 

  15. Zadeh, L. A. “Toward a Theory of Fuzzy Information Granulation and Its Centrality in Human Reasoning and Fuzzy Logic”, Fuzzy Sets and Systems, Elsevier, Vol 90 (1997) 111–127.

    Article  MATH  MathSciNet  Google Scholar 

  16. Zhong, N., Dong, J.Z., and Ohsuga, S. “Using Background Knowledge as a Bias to Control the Rule Discovery Process”, Djamel A. Zighed, Jan Komorowski, and J. Zytkow (eds.) Principles of Data Mining and Knowledge Discovery. LNAI 1910, Springer (2000) 691–698.

    Google Scholar 

  17. Zhong, N., Dong, J.Z., and Ohsuga, S. “Rule Discovery by Soft Induction Techniques”, Neurocomputing, An International Journal, Vol. 36(1-4) Elsevier (2001) 171–204.

    Article  MATH  Google Scholar 

  18. Zhong, N. and Skowron, A. “A Rough Sets Based Knowledge Discovery Process”, International Journal of Applied Mathematics and Computer Science, Vol. 11, No. 3, Technical University Press, Poland (2001) 101–117.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhong, N., Dong, JZ., Yao, Y.Y., Ohsuga, S. (2002). Gastric Cancer Data Mining with Ordered Information. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds) Rough Sets and Current Trends in Computing. RSCTC 2002. Lecture Notes in Computer Science(), vol 2475. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45813-1_62

Download citation

  • DOI: https://doi.org/10.1007/3-540-45813-1_62

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44274-5

  • Online ISBN: 978-3-540-45813-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics