Skip to main content

Maximum Entropy and Gaussian Models for Image Object Recognition

  • Conference paper
  • First Online:
Pattern Recognition (DAGM 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2449))

Included in the following conference series:

Abstract

The principle of maximum entropy is a powerful framework that can be used to estimate class posterior probabilities for pattern recognition tasks. In this paper, we show how this principle is related to the discriminative training of Gaussian mixture densities using the maximum mutual information criterion. This leads to a relaxation of the constraints on the covariance matrices to be positive (semi-) definite. Thus, we arrive at a conceptually simple model that allows to estimate a large number of free parameters reliably. We compare the proposed method with other state-of-the-art approaches in experiments with the well known US Postal Service handwritten digits recognition task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.L. Berger, S.A. Della Pietra, V.J. Della Pietra: A Maximum Entropy Approach to Natural Language Processing. Computational Linguistics, 22(1):39–72, March 1996.

    Google Scholar 

  2. J. Dahmen, D. Keysers, H. Ney, M.O. Güld: Statistical Image Object Recognition using Mixture Densities. J. Mathematical Imaging and Vision, 14(3):285–296, May 2001.

    Article  MATH  Google Scholar 

  3. J. Dahmen, R. Schlüter, H. Ney: Discriminative Training of Gaussian Mixture Densities for Image Object Recognition. In 21. DAGM Symposium Mustererkennung, Bonn, Germany, pp. 205–212, September 1999.

    Google Scholar 

  4. J.N. Darroch, D. Ratcliff: Generalized Iterative Scaling for Log-Linear Models. Annals of Mathematical Statistics, 43(5):1470–1480, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  5. T. Jaakkola, M. Meila, T. Jebara: Maximum Entropy Discrimination. In Advances in Neural Information Processing Systems 12, MIT Press, Cambridge, MA, pp. 470–476, 2000.

    Google Scholar 

  6. E.T. Jaynes: On the Rationale of Maximum Entropy Models. Proc. of the IEEE, 70(9):939–952, September 1982.

    Article  Google Scholar 

  7. D. Keysers, J. Dahmen, T. Theiner, H. Ney: Experiments with an Extended Tangent Distance. In Proc. 15th IEEE Int. Conf. on Pattern Recognition, volume 2, Barcelona, Spain, pp. 38–42, September 2000.

    Google Scholar 

  8. K. Nigam, J. Lafferty, A. McCallum: Using Maximum Entropy for Text Classification. In IJCAI-99 Workshop on Machine Learning for Information Filtering, Stockholm, Sweden, pp. 61–67, August 1999.

    Google Scholar 

  9. Y. Normandin: Maximum Mutual Information Estimation of Hidden Markov Models. In C.H. Lee, F.K. Soong, K.K. Paliwal (Eds.): Automatic Speech and Speaker Recognition, Kluwer Academic Publishers, Norwell, MA, pp. 57–81, 1996.

    Google Scholar 

  10. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery: Numerical Recipes in C. Cambridge University Press, Cambridge, second edition, 1992.

    MATH  Google Scholar 

  11. B. Schölkopf: Support Vector Learning. Oldenbourg Verlag, Munich, 1997.

    MATH  Google Scholar 

  12. B. Schölkopf, P. Simard, A. Smola, V. Vapnik: Prior Knowledge in Support Vector Kernels. In Advances in Neural Information Processing Systems 10. MIT Press, pp. 640–646, 1998.

    Google Scholar 

  13. P. Simard, Y. Le Cun, J. Denker, B. Victorri: Transformation Invariance in Pattern Recognition — Tangent Distance and Tangent Propagation. In G. Orr, K.R. Müller (Eds.): Neural Networks: Tricks of the Trade, volume 1524 of Lecture Notes in Computer Science, Springer, Heidelberg, pp. 239–274, 1998.

    Chapter  Google Scholar 

  14. P. Simard, Y. Le Cun, J. Denker: Efficient Pattern Recognition Using a New Transformation Distance. In Advances in Neural Information Processing Systems 5, Morgan Kaufmann, San Mateo, CA, pp. 50–58, 1993.

    Google Scholar 

  15. M.E. Tipping: The Relevance Vector Machine. In Advances in Neural Information Processing Systems 12. MIT Press, pp. 332–388, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keysers, D., Och, F.J., Ney, H. (2002). Maximum Entropy and Gaussian Models for Image Object Recognition. In: Van Gool, L. (eds) Pattern Recognition. DAGM 2002. Lecture Notes in Computer Science, vol 2449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45783-6_60

Download citation

  • DOI: https://doi.org/10.1007/3-540-45783-6_60

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44209-7

  • Online ISBN: 978-3-540-45783-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics