Skip to main content

Hypergraph Transversal Computation and Related Problems in Logic and AI

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2424))

Included in the following conference series:

Abstract

Generating minimal transversals of a hypergraph is an important problem which has many applications in Computer Science. In the present paper, we address this problem and its decisional variant, i.e., the recognition of the transversal hypergraph for another hypergraph. We survey some results on problems which are known to be related to computing the transversal hypergraph, where we focus on problems in propositional Logic and AI. Some of the results have been established already some time ago, and were announced but their derivation was not widely disseminated. We then address recent developments on the computational complexity of computing resp. recognizing the transversal hypergraph. The precise complexity of these problems is not known to date, and is in fact open for more than 20 years now.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Alchourrón, P. Gärdenfors, and D. Makinson. On the logic of theory change: Partial meet contraction and revision functions. J. Symb. Logic, 50:510–530, 1985.

    Article  MATH  Google Scholar 

  2. C. Benzaken. Algorithme de dualisation d’une fonction booléenne. Revue Francaise de Traitment de l’Information-Chiffres, 9(2):119–128, 1966.

    MathSciNet  Google Scholar 

  3. C. Bioch and T. Ibaraki. Complexity of identification and dualization of positive Boolean functions. Information and Computation, 123:50–63, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  4. E. Boros, K. Elbassioni, V. Gurvich, and L. Khachiyan. An efficient incremental algorithm for generating all maximal independent sets in hypergraphs of bounded dimension. Parallel Processing Letters, 10(4):253–266, 2000.

    Article  MathSciNet  Google Scholar 

  5. E. Boros, V. Gurvich, and P. L. Hammer. Dual subimplicants of positive Boolean functions. Optimization Methods and Software, 10:147–156, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  6. E. Boros, V. Gurvich, L. Khachiyan, and K. Makino. On the complexity of generating maximal frequent and minimal infrequent sets. In Proc. STACS-02, LNCS 2285, pp. 133–141, 2002.

    Google Scholar 

  7. E. Boros, P. Hammer, T. Ibaraki, and K. Kawakami. Polynomial time recognition of 2-monotonic positive Boolean functions given by an oracle. SIAM J. Comput., 26(1):93–109, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. de Kleer and B. C. Williams. Diagnosing multiple faults. Artificial Intelligence, 32:97–130, 1987.

    Article  MATH  Google Scholar 

  9. C. Domingo, N. Mishra, and L. Pitt. Eficient read-restricted monotone CNF/DNF dualization by learning with membership queries. Machine Learning, 37:89–110, 1999.

    Article  MATH  Google Scholar 

  10. T. Eiter. On Transversal Hypergraph Computation and Deciding Hypergraph Saturation. PhD thesis, Institut für Informationssysteme, TU Wien, Austria, 1991.

    Google Scholar 

  11. T. Eiter and G. Gottlob. Identifying the minimal transversals of a hypergraph and related problems. SIAM Journal on Computing, 24(6):1278–1304, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Eiter, G. Gottlob, and K. Makino. New results on monotone dualization and generating hypergraph transversals. In Proc. ACM STOC-2002, pp. 14–22, 2002. Full paper Tech. Rep. INFSYS RR-1843-02-05, TU Wien. Available as Computer Science Repository Report (CoRR) nr. cs.DS/0204009 via URL: http://arxiv.org/abs/cs/0204009.

  13. T. Eiter and K. Makino. On computing all abductive explanations. In Proc. 18th National Conference on Artificial Intelligence (AAAI’ 02). AAAI Press, 2002.

    Google Scholar 

  14. T. Eiter, K. Makino, and T. Ibaraki. Decision lists and related Boolean functions. Theoretical Computer Science, 270(1–2):493–524, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  15. R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. Journal of the ACM, 30:514–550, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Fagin, J. D. Ullman, and M. Y. Vardi. On the semantics of updates in databases. In Proc. PODS-83, pp. 352–365, 1983.

    Google Scholar 

  17. M. Fredman and L. Khachiyan. On the complexity of dualization of monotone disjunctive normal forms. Journal of Algorithms, 21:618–628, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  18. G. Friedrich, G. Gottlob, and W. Nejdl. Physical negation instead of fault models. In Proc. AAAI-91, July 1990.

    Google Scholar 

  19. P. Gärdenfors. Knowledge in Flux. Bradford Books, MIT Press, 1988.

    Google Scholar 

  20. M. Garey and D. S. Johnson. Computers and Intractability-A Guide to the Theory of NP-Completeness. W. H. Freeman, New York, 1979.

    MATH  Google Scholar 

  21. D. Gaur and R. Krishnamurti. Self-duality of bounded monotone Boolean functions and related problems. In Proc. 11th International Conference on Algorithmic Learning Theory (ALT), LNCS 1968, pp. 209–223. Springer, 2000.

    Google Scholar 

  22. M. L. Ginsberg. Counterfactuals. Artificial Intelligence, 30:35–79, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  23. M. L. Ginsberg and D. E. Smith. Reasoning about action I: A possible worlds approach. Artificial Intelligence, 35:165–195, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  24. G. Gogic, C. Papadimitriou, and M. Sideri. Incremental recompilation of knowledge. J. Artificial Intelligence Research, 8:23–37, 1998.

    MATH  MathSciNet  Google Scholar 

  25. J. Goldsmith, M. Levy, and M. Mundhenk. Limited nondeterminism. SIGACT News, 27(2):20–29, 1978.

    Article  Google Scholar 

  26. G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable queries. In Proc. 18th ACM Symp. on Principles of Database Systems (PODS-99), pp. 21–32, 1999. Full paper to appear in Journal of Computer and System Sciences.

    Google Scholar 

  27. G. Gottlob and L. Libkin. Investigations on Armstrong relations, dependency inference, and excluded functional dependencies. Acta Cybernetica, 9(4):385–402, 1990.

    MATH  MathSciNet  Google Scholar 

  28. D. Gunopulos, R. Khardon, H. Mannila, and H. Toivonen. Data mining, hypergraph transversals, and machine learning. In Proc. 16th ACM Symp. on Principles of Database Systems (PODS-97), pp. 209–216, 1997.

    Google Scholar 

  29. D. S. Johnson. A Catalog of Complexity Classes. In J. van Leeuwen, ed., Handbook of Theoretical Computer Science, A, chapter 2. Elsevier, 1990.

    Google Scholar 

  30. D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On generating all maximal independent sets. Information Processing Letters, 27:119–123, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  31. H. Kautz, M. Kearns, and B. Selman. Reasoning with characteristic models. In Proc. AAAI-93, pp. 34–39, 1993.

    Google Scholar 

  32. D. Kavvadias, C. Papadimitriou, and M. Sideri. On Horn envelopes and hypergraph transversals. In W. Ng, editor, Proc. 4th International Symposium on Algorithms and Computation (ISAAC-93), LNCS 762, pp. 399–405, 1993.

    Google Scholar 

  33. R. Khardon. Translating between Horn representations and their characteristic models. J. Artificial Intelligence Research, 3:349–372, 1995.

    MATH  Google Scholar 

  34. N. Linial and M. Tarsi. Deciding hypergraph 2-colorability by H-resolution. Theoretical Computer Science, 38:343–347, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  35. K. Makino and T. Ibaraki. A fast and simple algorithm for identifying 2-monotonic positive Boolean functions. Journal of Algorithms, 26:291–302, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  36. H. Mannila and K.-J. Räihä. Design by Example: An application of Armstrong relations. Journal of Computer and System Sciences, 22(2):126–141, 1986.

    Article  Google Scholar 

  37. N. Mishra and L. Pitt. Generating all maximal independent sets of boundeddegree hypergraphs. In Proc. Tenth Annual Conference on Computational Learning Theory (COLT-97), pp. 211–217, 1997.

    Google Scholar 

  38. B. Nebel. A knowledge level analysis of belief revision. In Proc. 1st Intl. Conf. on Principles of Knowledge Representation and Reasoning (KR-89), pp. 301–311, 1989.

    Google Scholar 

  39. B. Nebel. How Hard is it to Revise a Belief Base? In D. Gabbay and Ph. Smets, eds, Handbook on Defeasible Reasoning and Uncertainty Management Systems, volume III: Belief Change, pp. 77–145. Kluwer Academic, 1998.

    Google Scholar 

  40. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

    Google Scholar 

  41. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57–95, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  42. B. Selman and H. J. Levesque. Abductive and default reasoning: A computational core. In Proc. AAAI-90, pp. 343–348, 1990.

    Google Scholar 

  43. I. Shmulevich, A. Korshunov, and J. Astola. Almost all monotone boolean functions are polynomially learnable using membership queries. Information Processing Letters, 79:211–213, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  44. K. Takata. On the sequential method for listing minimal hitting sets. In Proc. Workshop on Discrete Mathematics and Data Mining, 2nd SIAM International Conference on Data Mining, April 11–13, Arlington, Virginia, USA, 2002.

    Google Scholar 

  45. M. Winslett. Updating Logical Databases. Cambridge University Press, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eiter, T., Gottlob, G. (2002). Hypergraph Transversal Computation and Related Problems in Logic and AI. In: Flesca, S., Greco, S., Ianni, G., Leone, N. (eds) Logics in Artificial Intelligence. JELIA 2002. Lecture Notes in Computer Science(), vol 2424. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45757-7_53

Download citation

  • DOI: https://doi.org/10.1007/3-540-45757-7_53

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44190-8

  • Online ISBN: 978-3-540-45757-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics