Skip to main content

A Computational Basis for Conic Arcs and Boolean Operations on Conic Polygons

  • Conference paper
  • First Online:
Algorithms — ESA 2002 (ESA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2461))

Included in the following conference series:

Abstract

We give an exact geometry kernel for conic arcs, algorithms for exact computation with low-degree algebraic numbers, and an algorithm for computing the arrangement of conic arcs that immediately leads to a realization of regularized boolean operations on conic polygons. A conic polygon, or polygon for short, is anything that can be obtained from linear or conic halfspaces (= the set of points where a linear or quadratic function is non-negative) by regularized boolean operations. The algorithm and its implementation are complete (they can handle all cases), exact (they give the mathematically correct result), and efficient (they can handle inputs with several hundred primitives).

Partially supported by the IST Programme of the EU as a Shared-cost RTD (FET Open) Project under Contract No IST-2000-26473(EC G—Effective Computational Geometry for Curves and Surfaces).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bentley and T. Ottmann. Algorithms for reporting and counting geometric intersections. IEEE Transaction on Computers C 28, pages 643–647, 1979.

    Google Scholar 

  2. R. Bix. Conics and Cubics: A Concrete Introduction to Algebraic Curves. Springer Verlag, 1998.

    Google Scholar 

  3. J.-D. Boissonnat and F. P. Preparata. Robust plane sweep for intersecting segments. Research Report 3270, INRIA, Sophia Antipolis, Sept. 1997.

    Google Scholar 

  4. J.-D. Boissonnat and J. Snoeyink. Efficient algorithms for line and curve segment intersection using restricted predicates. In Proc. 15th Annu. ACM Sympos. Comput. Geom., pages 370–379, 1999.

    Google Scholar 

  5. C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and S. Schmitt. A separation bound for real algebraic expressions. In ESA 2001, volume 2161 of LNCS, pages 254–265, 2001.

    Chapter  Google Scholar 

  6. T.M. Chan. Reporting curve segment intersection using restricted predicates. Computational Geometry, 16(4):245–256, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  7. G.E. Collins and A.-G. Akritas. Polynomial real root isolation using Descartes’ rule of sign. In SYMSAC, pages 272–275, Portland, OR, 1976.

    Chapter  Google Scholar 

  8. D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Springer-Verlag New York, Inc., 2nd edition, 1997.

    Google Scholar 

  9. M. de Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer, 1997.

    Google Scholar 

  10. O. Devillers, A. Fronville, B. Mourrain, and M. Teillaud. Exact predicates for circle arcs arrangements. In Proc. 16th Annu. ACM Sympos. Comput. Geom., 2000.

    Google Scholar 

  11. D.P. Dobkin and D.L. Souvaine. Computational geometry in a curved world. Algorithmica, 5:421–457, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  12. D.P. Dobkin, D. L. Souvaine, and C. J. Van Wyk. Decomposition and intersection of simple splinegons. Algorithmica, 3:473–486, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  13. L. Dupont, D. Lazard, S. Lazard, and S. Petitjean. A new algorithm for the robuts intersection of two general quadrics. submitted to Solid Modelling 2002.

    Google Scholar 

  14. A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. On the design of CGAL, the computational geometry algorithms library. Software—Practice and Experience, 30:1167–1202, 2000.

    Article  MATH  Google Scholar 

  15. E. Flato, D. Halperin, I. Hanniel, and O. Nechushtan. The design and implementation of planar maps in CGAL. In Proceedings of the 3rd Workshop on Algorithm Engineering, volume 1668 of Lecture Notes in Computer Science, pages 154–168. Springer, 1999.

    Google Scholar 

  16. S. Funke and K. Mehlhorn. Look—a lazy object-oriented kernel for geometric computation. In Proceedings of the 16th Annual Symposium on Computational Geometry (SCG-00), pages 156–165, Hong Kong, China, June 2000. Association of Computing Machinery (ACM), ACM Press.

    Google Scholar 

  17. N. Geismann, M. Hemmer, and E. Schömer. Computing a 3-dimensional cell in an arrangement of quadrics: Exactly and actually. In ACM Conference on Computational Geometry, 2001.

    Google Scholar 

  18. M. Hemmer. Reliable computation of planar and spatial arrangements of quadrics. Master’s thesis, Max-Planck-Institut für Informatik, 2002.

    Google Scholar 

  19. J. Keyser, T. Culver, M. Foskey, S. Krishnan, and D. Manocha. Esolid—a system for exact boundary evaluation. submitted to Solid Modelling 2002.

    Google Scholar 

  20. J. Keyser, T. Culver, D. Manocha, and S. Krishnan. MAPC: A library for efficient and exact manipulation of algebraic points and curves. Technical Report TR98-038, University of N. Carolina, Chapel Hill, 1998.

    Google Scholar 

  21. K. Mehlhorn and S. Näher. The LEDA Platform for Combinatorial and Geometric Computing. Cambridge University Press, 1999. 1018 pages.

    Google Scholar 

  22. D.R. Musser and A.A. Stepanov. Generic programming. In 1st Intl. Joint Conf. of ISSAC-88 and AAEC-6, pages 13–25. Springer LNCS 358, 1989.

    Google Scholar 

  23. F. Rouillier and P. Zimmermann. Efficient isolation of polynomial real roots. Technical Report 4113, INRIA, 2001.

    Google Scholar 

  24. A. A. Schäffer and C. J. Van Wyk. Convex hulls of piecewise-smooth Jordan curves. J. Algorithms, 8:66–94, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Wein. High-level.ltering for arrangements of conic arcs. In Proceedings of ESA 2002, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berberich, E., Eigenwillig, A., Hemmer, M., Hert, S., Mehlhorn, K., Schömer, E. (2002). A Computational Basis for Conic Arcs and Boolean Operations on Conic Polygons. In: Möhring, R., Raman, R. (eds) Algorithms — ESA 2002. ESA 2002. Lecture Notes in Computer Science, vol 2461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45749-6_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-45749-6_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44180-9

  • Online ISBN: 978-3-540-45749-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics