Skip to main content

lolliCoP — A Linear Logic Implementation of a Lean Connection-Method Theorem Prover for First-Order Classical Logic

  • Conference paper
  • First Online:
Automated Reasoning (IJCAR 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2083))

Included in the following conference series:

Abstract

When Prolog programs that manipulate lists to manage a collection of resources are rewritten to take advantage of the linear logic resource management provided by the logic programming language Lolli, they can obtain dramatic speedup. Thus far this has been demonstrated only for “toy” applications, such as n-queens. In this paper we present such a reimplementation of the lean connection-calculus prover leanCoP and obtain a theorem prover for first-order classical logic which rivals or outperforms state-of-the-art provers on a significant body of problems.

This paper reports work done while the second author was on a sabbatical-leave from Kobe University

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. B. Beckert and J. Posegga. leanTAP: lean tableau-based theorem proving. In 12th CADE, pages 793–797. Springer-Verlag LNAI 814, 1994.

    Google Scholar 

  • 2. W. Bibel. Deduction: Automated Logic. Academic Press, 1993.

    Google Scholar 

  • 3. W. Bibel, S. Brüning, U. Egly, and T. Rath. KoMeT. In 12th CADE, pages 783–787. Springer-Verlag LNAI 814, 1994.

    Google Scholar 

  • 4. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  • 5. James Harland, David Pym, and Michael Winikoff. Programming in Lygon: An overview. In M. Wirsing and M. Nivat, editors, Algebraic Methodology and Software Technology, pages 391–405, Munich, Germany, 1996. Springer-Verlag LNCS1101.

    Chapter  Google Scholar 

  • 6. J. S. Hodas and D. Miller. Logic programming in a fragment of intuitionistic linear logic. Information and Computation, 110(2):327–365, 1994. Extended abstraction in the Proceedings of the Sixth Annual Symposium on Logic in Computer Science, Amsterdam, July 15-18, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  • 7. J. S. Hodas, K. Watkins, N. Tamura, and K.-S. Kang. Efficient implementation of a linear logic programming language. In Proceedings of the 1998 Joint International Conference and Symposium on Logic Programming, pages 145–159, June 1998.

    Google Scholar 

  • 8. Argonne National Laboratory. Otter and MACE on TPTP v2.3.0. Web page at http://www-unix.msc.anl.gov/AR/otter/tptp230.html, May 2000.

  • 9. R. Letz, J. Schumann, S. Bayerl, and W. Bibel. Setheo: a high-performance theorem prover. Journal of Automated Reasoning, 8(2):183–212, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  • 10. W. MacCune. Otter 3.0 reference manual and guide. Technical Report ANL-94/6, Argonne National Laboratory, 1994.

    Google Scholar 

  • 11. D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundation for logic programming. Annals of Pure and Applied Logic, 51:125–157, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  • 12. M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann, and K. Mayr. the CADE-13 systems. Journal of Automated Reasoning, 18:237–246, 1997.

    Article  Google Scholar 

  • 13. G. Nadathur and D. J. Mitchell. Teyjus-a compiler and abstract machine based implementation of lambda Prolog. In 6th CADE, pages 287–291. Springer-Verlag LNCS 1632, 1999.

    Google Scholar 

  • 14. J. Otten and W. Bibel. leanCoP: lean connection-based theorem proving. In Proceedings of the Third International Workshop on First-Order Theorem Proving, pages 152–157. University of Koblenz, 2000. Electronically available, along with submitted journal-length version, at http://www.intellektik.informatik.tu-darmstadt.de/~jeotten/leanCoP/

  • 15. G. Sutcliffe and C. Suttner. CNF release v1.2.1. Journal of Automated Reasoning, 21:177–203, 1998.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

S., J., Tamura, N. (2001). lolliCoP — A Linear Logic Implementation of a Lean Connection-Method Theorem Prover for First-Order Classical Logic. In: Goré, R., Leitsch, A., Nipkow, T. (eds) Automated Reasoning. IJCAR 2001. Lecture Notes in Computer Science, vol 2083. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45744-5_55

Download citation

  • DOI: https://doi.org/10.1007/3-540-45744-5_55

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42254-9

  • Online ISBN: 978-3-540-45744-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics